
A three-dimensional numerical

model of a horizontal axis, energy

extracting turbine

An implementation on a parallel computing system

Angus C.W. Creech

Submitted for the degree of Doctor of Philosophy

Heriot-Watt University, Scotland

School of Engineering and Physical Sciences

March 2009

The copyright in this thesis is owned by the author. Any quotation from the

thesis or use of any of the information contained in it must acknowledge this

thesis as the source of the quotation or information.

Abstract
In the last decade, there has been a resurgence of interest in

tidal power as a renewable, and environmentally friendly source of
electricity. Scotland is well placed in this regard, as the currents in
the surrounding seas are primarily tidal; that is to say, driven by
lunar and solar tides.

Investigations into tidal streams as an energy source, their vi-
ability in particular locales, the efficient organisation of marine
turbine farms, and most importantly, the effect of such farms on
the environment, demand the use of computational fluid dynamics
for effective modelling. They also require a turbine model sophis-
ticated enough to generate realistic power output and wakes for a
variety of flow conditions, yet simple enough to simulate a number
of turbines on modest computing resources.

What is presented here then, is the justification for such a
model, the development and deployment of it during my PhD, and
my validation of the model in a variety of environments.

1

Acknowledgements
I would like to thank my supervisor, Dr Wolf-Gerrit Früh, for

his assistance during my studies, and the Applied Modelling Com-
putional Group of Imperial College, London, for supplying Fluidity,
as well as helping me to use it. My office colleagues also deserve a
mention, for being good company and sources of valuable discus-
sion. Lastly but not least, I must mention the three most important
people – my parents, who indulged my curiosity in how things work
from an early age; and Vanessa, without whose support none of this
would have been possible.

2

Author’s Declaration
I declare that the work in this dissertation was carried out in

accordance with the Regulations of Heriot-Watt University

Signed: .

Date: .

3

Contents

1 Introduction 8
1.1 Thesis overview . 8
1.2 Tidal currents . 9

1.2.1 Newton’s theory of lunar tides 9
1.2.2 Solar tides . 11
1.2.3 The Coriolis effect . 11
1.2.4 Factors affecting tidal streams 12

1.3 Tidal power . 15
1.3.1 The power equation . 15
1.3.2 Power extraction devices 16

1.4 General fluid dynamics equations 19
1.4.1 The momentum equation 19
1.4.2 The continuity equation 21
1.4.3 Boundary conditions . 21

1.5 Computational fluid dynamics modelling 22
1.5.1 Finite difference . 23
1.5.2 Finite element . 27

1.6 Tidal modelling . 30
1.6.1 Finite difference methods 30
1.6.2 Finite element methods 42

2 CFD package validation 52
2.1 Introduction . 52
2.2 About Fluidity . 52
2.3 Boundary layer theory . 52
2.4 Computational models . 55

2.4.1 Adaptive-mesh, 3D finite element model in Fluidity . . . 55
2.4.2 Fixed-mesh 2D finite element model in COMSOL 60

2.5 Results . 61
2.5.1 Fluidity, adaptive mesh 61
2.5.2 COMSOL, fixed mesh 63

2.6 Comparison between Fluidity and COMSOL 70
2.7 Conclusions . 70

4

3 Existing turbine models 73
3.1 The actuator disc . 73

3.1.1 Basic theory . 73
3.1.2 Simple momentum theory 75
3.1.3 Power . 76
3.1.4 The thrust coefficient . 77
3.1.5 Blade element momentum theory and wake rotation . . . 77
3.1.6 Aerofoils . 79

3.2 Further extensions to actuator theory 80
3.2.1 The Ψ− 𝜔 model . 80

3.3 Full 3D model simulation . 82
3.4 Wake modelling for wind farms 83

4 Turbine model design 85
4.1 Rationale . 85
4.2 Physical properties . 86
4.3 Method overview . 88

4.3.1 Free-wheeling angular velocity 89
4.3.2 Calculating the power output 90
4.3.3 Turbine angular velocity 92
4.3.4 Extending solidity . 94
4.3.5 Limiting turbine performance 102
4.3.6 Turbulence . 111

4.4 Numerical modelling . 114
4.4.1 Translation, rotation and volume definition 114
4.4.2 Velocity changes inside the turbine 114
4.4.3 Modelling turbulence . 119
4.4.4 Per-node force terms . 121
4.4.5 Power . 122
4.4.6 Relaxation of variables 123

5 Software design 126
5.1 Introduction . 126

5.1.1 Design ethos . 126
5.1.2 Interface to the module 127
5.1.3 Parallel programming . 128
5.1.4 Development environment 131

5.2 The CFD module interface . 132
5.2.1 Variables passed from Fluidity 132
5.2.2 Calling the module . 134

5.3 The module . 136
5.3.1 Preparation . 136
5.3.2 Calculation . 139
5.3.3 Variable collection and output 140

5

6 Experiments and experimental process 142
6.1 Overview . 142

6.1.1 Aims . 142
6.1.2 Structure . 142

6.2 The turbine presence field . 143
6.3 Wind turbines . 144

6.3.1 Choice of turbine . 144
6.3.2 Defining turbine properties 144
6.3.3 Vestas V52, without inlet turbulence 150
6.3.4 Vestas V52, with inlet turbulence 155

6.4 Marine turbines . 157
6.4.1 Choice of marine turbine 157
6.4.2 Defining turbine properties 158
6.4.3 Seaflow water channel with inlet turbulence 162
6.4.4 Seaflow with bottom drag 167

7 Results and analysis 172
7.1 Data formats . 172

7.1.1 Unstructured mesh files 172
7.1.2 Time-dependent turbine performance data 173

7.2 Analysis software . 174
7.3 Techniques for analysis . 175

7.3.1 Preface . 175
7.3.2 Velocity deficit . 176
7.3.3 Turbulence intensity . 177
7.3.4 Circulation . 177
7.3.5 Turbine performance . 179

7.4 Results for Vestas V52 wind turbine 180
7.4.1 Vestas V52 with inlet turbulence at 𝑢0 = 12 m/s 180
7.4.2 Vestas V52 with inlet turbulence: overview of performance184
7.4.3 Vestas V52 with inlet turbulence: comparisions between

wind speeds . 186
7.4.4 Vestas V52: without turbulent inlet conditions 191

7.5 Results for Seaflow marine turbine 197
7.5.1 Channel with rigid lid: inlet condition 𝑢0 = 2.70 m/s . . 197
7.5.2 Channel with rigid lid: overview of performance 200
7.5.3 Channel with rigid lid: comparison between flow speeds . 202
7.5.4 Channel with vertical velocity gradient and bottom drag 207

8 Discussion 211
8.1 Comparisons between simulations 211

8.1.1 Vestas V52: turbulent versus non-turbulent inlet condi-
tions . 211

8.1.2 Vestas V52 versus Seaflow 212
8.1.3 Realistic velocity profiles and bottom drag 215

8.2 Comparison with existing literature 216

6

8.2.1 With wind turbine theory and experiment 216
8.2.2 With marine turbine theory and experiment 224

9 Conclusions 227
9.1 Achievements . 227
9.2 Future work . 228

A Test CFD solvers 230
A.1 An implementation of a SIMPLE algorithm 230

A.1.1 Model overview . 230
A.1.2 Program structure . 230
A.1.3 Parameters . 231
A.1.4 The main routine and entry point 231
A.1.5 Initialisation . 235
A.1.6 The calculation routines 240

A.2 A simple triangular element streamline solver 259
A.2.1 Program structure . 259
A.2.2 List of variables and parameters 260
A.2.3 Program Listing and Description 261
A.2.4 Displaying results . 268
A.2.5 Subroutines . 271

7

Chapter 1

Introduction

In this chapter, after introducing the main aims of the thesis and an outline of

the structure, we shall briefly cover the origins of tidal currents, before moving

on to describing tidal power generation. Following on from this is a discussion

of various computional fluid dynamics (CFD) techniques.

1.1. Thesis overview

This thesis covers the design, development and validation of a computational

model for axial-flow wind and marine (tidal) turbines. Its purpose is not only

to show how the performance of such turbines can be assessed in realistic flow

conditions using modest computing resources, but also to provide a means for

studying the wake structures behind them. Wake recovery is known to be an

issue in wind farms, but – as this thesis will show – may be even more of a

problem in tidal turbine farms.

A background to marine energy concerns and computational fluid dynamics

(CFD) is given in chapter 1; this is then followed by the validation of the CFD

program chosen in chapter 2. Briefly, alternative pre-existing axial-flow models

are covered in chapter 3, which leads into the full mathematical presentation

of the turbine model developed in chapter 4. Chapter 5 deals with the software

development, particularly parallelism issues; chapters 6 & 7 then describe the

experiments and results in detail, which chapter 8 discusses. Chapter 9 forms

conclusions from these results, and suggests future work.

8

1.2 Tidal currents

1.2. Tidal currents

Marine energy schemes have requirements regarding the types of oceanic cur-

rents can be exploited. Tidal power schemes demand a flow strength of around

2 − 3 m/s to generate a worthwhile amount of power, and these must be in

waters of tens of metres deep. This rules out wind-driven Langmuir cells, and

consequently convergence/divergence zones. Instead, we must restrict our-

selves to tidal currents generated by the sun and the moon.

1.2.1. Newton’s theory of lunar tides

Newton was the first to arrive at a satisfactory explanation of tide generation:

this is known as the Equilibrium Theory of Tides. Below is a brief account,

adapted from Bryden [14].

In a simplified model, the Earth-moon system rotates around a common

centre of mass 𝐶𝑀 𝑠𝑦𝑠𝑡𝑒𝑚, as shown in fig. 1.1. This is off-centre from the

Earth’s centre of mass, 𝐶𝑀𝐸𝑎𝑟𝑡ℎ, by a distance 𝑟 in the same orbital plane;

similarly, the Moon’s centre of mass 𝐶𝑀𝑀𝑜𝑜𝑛 orbits around 𝐶𝑀 𝑠𝑦𝑠𝑡𝑒𝑚 in a

circular path at a radius of 𝑅𝑀𝑜𝑜𝑛 (see fig. 1.1). Since the moon’s gravity at

point B will be weaker than the centrifugal acceleration due to the rotation

of the Earth about 𝐶𝑀 𝑠𝑦𝑠𝑡𝑒𝑚, this will result in a tidal bulge at B. Newton’s

equilibrium theory dictates that there will be two tidal bulges, with the second

one at A.

These two tidal bulges follow the moon as it orbits around 𝐶𝑀 𝑠𝑦𝑠𝑡𝑒𝑚 with

a periodicity of 27.3 days; the Earth rotates about 𝐶𝑀 𝑠𝑦𝑠𝑡𝑒𝑚 in the same

direction as the moon orbits, which gives a tidal cycle of 12 hours 25 minutes;

the moon also has an elliptical orbit around the Earth, causing tidal forces

to vary by 40%. Furthermore, additional monthly variations occur due to the

inclination of the Moon’s orbit, which is 28𝑜 with respect to the Earth’s orbital

plane, shown in fig. 1.2.

9

1.2 Tidal currents

Figure 1.1: Rotation of Earth-Moon system

Figure 1.2: Consequences of Moon’s elliptical orbit

10

1.2 Tidal currents

1.2.2. Solar tides

Despite the Sun’s mass, the solar influence on tides is roughly half that of the

Moon’s – however, the combination of the two gives rise to monthly fluctua-

tions: the sun’s tide is semi-diurnal, with a periodicity of precisely 12 hours.

The Earth’s orbit around the Sun is almost circular in comparison with Moon’s

orbit around the Earth; the distance varies by about 4%. The highest tides, ie.

the spring tides occur when both the Sun and the Moon are exactly in phase,

and the neap (lowest) tides occur when they are out of phase by 𝜋
2

or 3𝜋
2

.

Figure 1.3: In (a) we can see the spring tidal bulge, occuring when the Moon

and Sun are in alignment; the dark blue ring represents solar tide, and the

lighter blue the tide with the lunar component added. The neap tides are

shown in (b), occurring when the Sun and Moon are out of phase by 𝜋
2

or 3𝜋
2

1.2.3. The Coriolis effect

The Coriolis Effect is a consequence of the conservation of angular momentum,

and the Earth’s rotation. In the Northern Hemisphere, as a parcel of water

travels northwards or southwards it will veer to the right; in the Southern

Hemisphere this is mirrored, to the left.

The Coriolis force is, along with bathymetry, a key component in the for-

mation of gyres – large scale semi-closed currents which inhabit ocean basins

such as the North Atlantic’s. These will explained further in section 1.2.4.

11

1.2 Tidal currents

Figure 1.4: How the Coriolis effect deviates the path of bodies in the Northern

hemisphere

1.2.4. Factors affecting tidal streams

Tidal currents, or streams, are a consequence of several influences, which will

be explained below.

Gyres and tidal ranges

Gyres are produced through a combination of tidal forces, the Coriolis effect,

topography and bathymetry. Ocean basins, such the North Atlantic basin,

are semi-closed circulatory systems, which underpin the gyre. Due to Coriolis

‘forces’, any water travelling either northward or southward is diverted to the

right, and this generates a rotating tidal wave which sweeps round the basin.

This can give rise to large tidal ranges, such as those in the Bay of Fundy

[31] and the Lofoten Islands in Norway [32]. A more local example would that

of the semi-diurnal 𝑀2 tide that passes from the North Atlantic, around the

Scottish coast and into the Artic-Barents basin [33].

According to Bryden [14] and Lemonis [44], areas that exhibit large tidal

ranges are:

∙ England - Bristol Channel; Severn Estuary; Alderney Straits, Channel

Islands

12

1.2 Tidal currents

Figure 1.5: Gyres in the Atlantic and Artic oceans, courtesy of Advanced Atlas

of Modern Geography [12]

∙ Scotland – Pentland Firth; Shetland Isles; Solway Firth

∙ France – La Rance, Brittany

∙ Italy – Straits of Messina

∙ Southeast Asia – Singapore

∙ China – Jangxia Creeck, East China Sea

∙ Japan – Naruto Strait

∙ Russia – Bay of Kislaya

∙ Canada - Bay of Fundy

∙ Western Australia – West Kimberley

13

1.3 Tidal power

Figure 1.6: Tidal ranges around the World in metres.

These large tidal ranges raise the sea level above equilibrium and generate

gravitational potential energy; this potential energy is then converted into

kinetic energy in the form of tidal streams, as the sea attempts to return to

its equilibrium state.

Bathymetry and topography

Topographic features such as islands, headlands etc. can have a drastic effect

on tidal current flow. A famous example of this in Scotland would be the Gulf

of the Corryvreckan, a hazardous strait with a strong tidal stream which runs

between the Islands of Jura and Scarba, off the West Coast of Scotland: the

channelling of the tidal currents through a relatively narrow strait can cause

flow speeds in excess of 5 m/s. The bathymetry of the local ocean floor also has

a profound effect on flow too; the turbulent whirlpools of the Corryvreckan are

thought to be magnified in their effect by a ridge of submerged rock that runs

out from Scarba to the north. Other examples of topographically-enhanced

flow would be the Pentland Firth, between the northern tip of Scotland and

the Orkney Islands; the tidal resonance that occurs in the Bay of Fundy, North

America; and the Moskstraumen whirlpools - more famously known as The

Maelstrom. A more detailed, qualitative analysis of the role topography plays

in creating the Moskstraumen is given by Gjevik, Moe and Ommundsen [32].

14

1.3 Tidal power

1.3. Tidal power

The kinetic energy associated with tidal currents is vast – current estimates

[44] are that globally 26 PWh of energy could feasibly be extracted from the

world’s oceans each year, with a third of that in shallow-water areas. This

suggested value represents approximately 10% of the World’s energy demands,

a significant amount, whose importance should increase in light of the Kyoto

Protocol.

In Europe, two companies, IT Power Ltd and Tecnomare SpA examined

106 sites in around Europe, which could supply 105 TWh/year. Scotland,

England and Wales have been estimated to have a potential energy output of

33.5 TWh/year according to [25], but recent research suggests that this figure

is too low [14], with 270 TWh/year being more realistic, and that even the

Pentland Firth alone, with currents in excess of 7 m/s, may have a potential

for 140 TWh/year.

One of the reasons for these large figures is that even at mild flow speeds

(2 m/s) compared to those that wind turbines experience, the density of sea-

water (approximately 1027 kg/m3), about 850 times that of air, implies that

tidal currents can harbour a considerable amount of kinetic energy.

There can be little doubt of the importance of tidal energy as a supply

of electricity; however the technology of tidal stream energy extraction, espe-

cially in open waters, is not yet fully formed or complete, and is still being

researched vigorously. Consequently a variety of designs have flourished. The

more successful designs are detailed below.

1.3.1. The power equation

The power associated with a moving fluid can be stated as

𝑃𝑊 =
1

2
𝜌𝐴𝑢3 (1.1)

Where is 𝜌 is the density of the fluid (in this case seawater), 𝐴 is the cross-

sectional area through which the fluid passes, and 𝑢 is the mean speed of the

flow.

15

1.3 Tidal power

As a crude estimate, a tidal channel 1000 m wide and 40 m deep with a

sustained current of 3 m/s would give a power of roughly 530 MW; however no

tidal power devices operate at 100% efficiency, so the amount of extractable

power is

𝑃𝑊 = 𝑐𝑃
1

2
𝜌𝐴𝐷𝑢

3 (1.2)

Where 𝑐𝑃 is the power extraction coefficient, and 𝐴𝐷 is the cross-sectional

area of the device (or devices) exposed to the flow. However, detailed assess-

ment of tidal sites is difficult, since 𝑐𝑃 varies with both the device design and

local flow conditions. This interdependent relationship is likely to be highly

non-linear due to its origin in fluid dynamics, and so perhaps not suited to

analyses such as [15].

1.3.2. Power extraction devices

Horizontal axis turbines

Horizontal axis turbines have the propeller perpendicular to the flow, which

allows the tidal current to drive the rotor, and thus an electric generator. One

of the most successful of these is SeaFlow from Marine Current Turbines Ltd.

(see fig. 1.7), who have a prototype operating near Lynmouth, England [48].

It is built on a monopile embedded in the sea floor, with a maintenance tower

above the surface; the turbine mount slides up towards the surface for repairs

or in heavy weather. Marine Current Turbines estimate that the SeaFlow

device generates around 300 kW at a peak flow of 2.7 m/s.

A limitation of this design is that it is restricted to relatively shallow wa-

ters, approximately 40 metres deep. Alternatives have been suggested for

deeper waters, such as semi-buoyant devices secured to the seabed via moor-

ings. However there are concerns about safety particularly about the stress,

mainly through buoyancy thrust and wave motion, that these moorings would

be subjected to [30].

16

1.3 Tidal power

Figure 1.7: The SeaFlow horizontal axis turbine (courtesy of Marine Current

Turbines Ltd.)

Vertical axis turbines

The propeller blades in vertical axis turbines rotate in a manner as shown in

fig. 1.8. There is only one turbine known of this type – the ENERMAR device

developed by Ponte di Archimede nello Stretto di messina SpA in Italy. This

turbine consists of a specially designed vertical axis rotor named Kobold which

is connected to an electrical generator, housed in a floating platform 10 meters

in diameter. One key feature of this device is that the direction of rotation is

independent of the direction of the current, which is unique in marine energy

to the Kobold rotor.

A prototype was deployed 150m offshore in the Messina Straits, Italy, in

2002, at a depth of 20m. With a current of 1.8m/s, 20 kW of electrical power

was generated, giving an estimated energy conversion efficiency of 23%; at

higher speeds approximately 3 m/s, 150 kW is expected according to Lemonis

[44].

17

1.3 Tidal power

Figure 1.8: Current entering a vertical turbine

Figure 1.9: Artist’s impression of an ENERMAR Kobold turbine farm (cour-

tesy of ImageFactory/Quark). The turbine blades are shown in light purple.

18

1.4 General fluid dynamics equations

Hydrofoils

The only hydrofoil currently being developed is the Stingray hydrofoil (see fig.

1.10) manufactured by Engineering Business Ltd. The broad yellow strip is a

hydrodynamic surface, which generates lift. The hydroplanes oscillate up and

down, as the angle is altered to generate lift or down-force. The hydroplane

arm pumps high-pressure oil to drive a hydraulic motor, which then drives an

electric generator.

Figure 1.10: Stingray hydrofoil (courtesy of Lemonis).

In 2002, a full-size prototype with a rated power output of 150 kW was

deployed in Scotland at a depth of 35 metres in Yell Sound, Shetland.

1.4. General fluid dynamics equations

The basic equations that govern the fluid are described here, limited to incom-

pressible Navier-Stokes flow with the Boussinesq approximation.

1.4.1. The momentum equation

If we assume a three-dimensional Cartesian co-ordinate system in the rotating

reference frame of the Earth, such that the axis of 𝑥1 points eastward, the axis

𝑥2 points northward, and the 𝑥3 axis points upwards towards the zenith, and

that the corresponding velocity components are 𝑢1,, 𝑢2 and 𝑢3 respectively,

19

1.4 General fluid dynamics equations

then the momentum equations (from [42]) can be written in tensor notation

as

𝜌
𝜕𝑢𝑖

𝜕𝑡
+ 𝜌𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

+ 2𝜌𝜖𝑖𝑗𝑘Ω𝑗𝑢𝑘 = − 𝜕𝑝

𝜕𝑥𝑖

− 𝑔𝜌𝛿3𝑖 +
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗

(1.3)

Where:

∙ 𝜖𝑖𝑗𝑘 is equal to

1 if 𝑖, 𝑗 and 𝑘 are in cyclic order

−1 if they are anticyclic

0 if two or more axis are of identical value

∙ 𝑡 is time

∙ 𝑝 is pressure

∙ 𝜌 is the density of the fluid

∙ Ω𝑗 is the Earth’s angular velocity

∙ 𝑔 is the Earth’s gravitational acceleration,

∙ 𝛿3𝑖 is a Kronecker delta

∙ 𝜎𝑖𝑗 is the stress tensor

If the centrifugal/centripetal term is absorbed into 𝑔 , and assuming New-

tonian fluid stress, this can be rewritten as:

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌(𝑢.∇) + 2Ω× 𝑢 = −∇𝑝− 𝑔𝑝+ 𝜇∇2𝑢 (1.4)

Which should be a more familiar form of the Navier-Stokes momentum

equation in a rotating frame.

20

1.4 General fluid dynamics equations

1.4.2. The continuity equation

The first continuity equation guarantees the conservation of mass

𝜕𝜌
𝜕𝑡

+ 𝜕(𝜌𝑢𝑖)
𝜕𝑥𝑖

= 0 or more commonly 𝜕𝜌
𝜕𝑡

+∇.𝑢 = 0

Generally speaking, for properties of the fluid such as temperature and

salinity, denoted by Φ:

𝜕(𝜌Φ)

𝜕𝑡
+
𝜕(𝜌Φ𝑢𝑖)

𝜕𝑥𝑖

= −𝜕𝐹𝑖

𝜕𝑥𝑖

− 𝑞 (1.5)

Where 𝐹𝑖 represents the flux, and 𝑞 the internal generation.

This can be expressed as:

𝜕(𝜌Φ)

𝜕𝑡
+∇.(𝜌Φ𝑢) = ∇.𝐹 − 𝑞 (1.6)

This is a more general form of mass continuity equation.

1.4.3. Boundary conditions

Boundary conditions define the conditions at the edge of the solution space,

and are usually defined prior to any simulation or model being run; they come

in a variety of flavours.

Solid boundaries

Solid boundaries have, usually, one condition: the no-slip boundary condition.

That is to say, the fluid velocity 𝑢 = 0 at every point on this boundary. This is

not always so, especially in two-dimensional vertically-integrated models which

may employ free-slip sea floor boundaries. As no-slip proscribes a fixed value

at the boundary, it is also a Dirchlet boundary condition.

Open boundaries

Open, or tidal, boundaries can take several forms. They could be Dirchlet

– that is to say, have fixed flux values. They could also be Von Neumann

boundaries, where the velocity gradient is set to a constant, ie.

21

1.5 Computational fluid dynamics modelling

𝜕𝑢

𝜕𝑥𝑛

= 𝑓 (1.7)

where

∙ 𝑢 is the magnitude of 𝑢

∙ 𝑥𝑛 is a physical coordinate whose axis is normal to the boundary

∙ 𝑓 is a constant (not the Coriolis parameter, as it is denoted later in this

chapter)

Open boundaries can also be a combination of Dirchlet and Von Neumann:

these are called mixed or Robin conditions. In this case, the boundary would

be described as:

𝜕𝑢

𝜕𝑥𝑛

+ 𝑘𝑢 = 𝑓 (1.8)

where additionally, 𝑘 is another constant. This is often described as a

‘forcing’ boundary condition.

1.5. Computational fluid dynamics modelling

In physical oceanographic modelling, the problem posed is often analytically

intractable and requires numerical simulation to provide any meaningful solu-

tion; indeed, situations describing unsteady flow are not uncommon.

Two of the main numerical approaches were evaluated for suitability: finite

difference and finite element. The basics of these techniques will be explained

in general, discipline non-specific terms, laying the foundations for the follow-

ing chapter which will cover each type of model in more detail.

A third set of techniques, finite volume methods, are quite similar to fi-

nite difference methods. They work by evaluating the fluxes between small,

discrete volumes within the fluid, and so are by definition conserve mass; how-

ever, unlike finite difference methods they can also support unstructured mesh

geometries. As will be shown later, finite element methods have similar ad-

vantages.

22

1.5 Computational fluid dynamics modelling

1.5.1. Finite difference

With finite difference fluid modelling, a discrete grid is created over the solution

space, and the continuous partial differential equations (eg. the momentum

and continuity equations) are replaced by finite difference expressions. An

algorithm is constructed which uses these finite difference expressions to solve

variables such as the fluid velocity 𝑢 and pressure 𝑝, although fluid properties

such as salinity and temperature may also be included here. Von Neumann and

Dirichlet boundary conditions are usually defined at the edges of this solution

space, but they can also be defined within it.

Finite difference methods have a long history in computational fluid dy-

namics; one example shall be taken to demonstrate finite difference techniques.

The SIMPLE algorithms: formulation

Introduced by Patankar and Spalding in 1972 [62], these finite volume algo-

rithms are based on a staggered grid of the momentum and continuity equa-

tions. In figure 1.11 we can see a two-dimensional example of this grid, with

pressure defined in between points where the velocity is defined:

Figure 1.11: A two-dimensional finite difference grid (courtesy of Fletcher).

23

1.5 Computational fluid dynamics modelling

The SIMPLE algorithms semi-implicitly link the pressure and continuity

terms to iteratively solve the equations, hence the name, SIMPLE – Semi-

Implicit Method for Pressure-Linked Equations. They can solve for steady

and unsteady flow.

We take the non-dimensional equations for two-dimensional incompressible

laminar flow as described in Fletcher [26]:

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0 (1.9)

𝜕𝑢

𝜕𝑡
+
𝜕𝑢

𝜕𝑦
+
𝜕𝑢2

𝜕𝑥
+

𝜕

𝜕𝑦
(𝑢𝑣) +

𝜕𝑝

𝜕𝑥
=

1

𝑅𝑒
(
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) (1.10)

𝜕𝑣

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑢𝑣) +

𝜕𝑣2

𝜕𝑦
+
𝜕𝑝

𝜕𝑦
=

1

𝑅𝑒
(
𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
) (1.11)

Where 𝑅𝑒 is defined as 𝑢𝐿
𝜈

(with 𝑢 the mean speed of the flow, 𝐿 the length

of the problem, and 𝜈 the kinematic viscosity of the fluid), whilst 𝑢 and 𝑣 are

the 𝑥 and 𝑦 components of the fluid’s velocity.

If (𝑗, 𝑘) represents a particular point on a grid representing the discretised

solution space, and 𝑛 denotes the 𝑛𝑡ℎ time step, then we can rewrite the discrete

continuity equation as

(𝑢𝑛+1
𝑗,𝑘 − 𝑢𝑛+1

𝑗−1,𝑘)Δ𝑦 + (𝑣𝑛+1
𝑗,𝑘 + 𝑣𝑛+1

𝑗,𝑘−1)Δ𝑥 = 0 (1.12)

where Δ𝑥 and Δ𝑦 represent the grid step size in the x and y directions

respectively.

Fletcher shows how the momentum equations can be derived, however here

we will simply state the x-momentum equation as

(
Δ𝑥Δ𝑦

Δ𝑡
+ 𝑎𝑢

𝑗,𝑘)𝑢
𝑛+1
𝑗,𝑘 +

∑︁
𝑎𝑢

𝑛𝑏𝑢
𝑛+1
𝑛𝑏 + 𝑏𝑢 + Δ𝑦(𝑝𝑛+1

𝑗+1,𝑘 − 𝑝𝑛+1
𝑗,𝑘) = 0 (1.13)

and the y-momentum equation as

(
Δ𝑥Δ𝑦

Δ𝑡
+ 𝑎𝑣

𝑗,𝑘)𝑣
𝑛+1
𝑗,𝑘 +

∑︁
𝑎𝑣

𝑛𝑏𝑣
𝑛+1
𝑛𝑏 + 𝑏𝑣 + Δ𝑥(𝑝𝑛+1

𝑗,𝑘+1 − 𝑝𝑛+1
𝑗,𝑘) = 0 (1.14)

24

1.5 Computational fluid dynamics modelling

where

∙ Δ𝑡 is the iteration time-step size in the simulation

∙ ∑︀ 𝑎𝑢
𝑛𝑏𝑢

𝑛+1
𝑗,𝑘 and

∑︀
𝑎𝑣

𝑛𝑏𝑣
𝑛+1
𝑗,𝑘 represent all the convection and diffusion con-

tributions from adjacent grid nodes for 𝑢𝑗,𝑘 and 𝑣𝑗,𝑘 respectively

∙ coefficients 𝑎𝑢
𝑗,𝑘 and 𝑎𝑣

𝑗,𝑘 depend on the grid sizes and the solution of 𝑢

and 𝑣 at the 𝑛𝑡ℎ time step (see appendix A.1.6).

∙ 𝑏𝑢 = (−Δ𝑥Δ𝑦
Δ𝑡

)𝑢𝑛
𝑗,𝑘; similar for 𝑏𝑣.

The main problem here is that the pressure terms and the velocity terms are

coupled. The SIMPLE algorithm links the two together. Firstly, the pressure

values on the grid are initialised to some value, usually to zero before the first

first time-step; then, the values for the velocity and pressure are iteratively

updated - see Fletcher [26] p362-365 for more details.

The steps of the iteration are:

1. Calculation of the guess for the correct value for the velocity, 𝑢*, from

the following equations:

𝑢*𝑗,𝑘 =
−1

(Δ𝑥Δ𝑦
Δ𝑡

+ 𝑎𝑢
𝑗,𝑘)

.[
∑︁

𝑎𝑢
𝑛𝑏𝑢

*
𝑛𝑏 + 𝑏𝑢 + Δ𝑦(𝑝𝑛

𝑗+1,𝑘 − 𝑝𝑛
𝑗,𝑘)] (1.15)

𝑣*𝑗,𝑘 =
−1

(Δ𝑥Δ𝑦
Δ𝑡

+ 𝑎𝑣
𝑗,𝑘)

.[
∑︁

𝑎𝑣
𝑛𝑏𝑣

*
𝑛𝑏 + 𝑏𝑢 + Δ𝑦(𝑝𝑛

𝑗,𝑘+1 − 𝑝𝑛
𝑗,𝑘)] (1.16)

2. Obtain the correction to the pressure, 𝛿𝑝, from the simultaneous set of

equations

𝑎𝑝
𝑗,𝑘𝛿𝑝𝑗,𝑘 =

∑︁
𝑎𝑝

𝑛𝑏𝛿𝑝𝑛𝑏 + 𝑏𝑝 (1.17)

where 𝑏𝑝 = −(𝑢*𝑗,𝑘 − 𝑢*𝑗−1,𝑘)Δ𝑦 − (𝑣*𝑗,𝑘 − 𝑣*𝑗,𝑘−1)Δ𝑥

3. Calculation of the velocity correction, 𝑢𝑐, from the equations

𝑢𝑐
𝑗,𝑘 = 𝑑𝑗,𝑘(𝛿𝑝𝑗,𝑘 − 𝛿𝑝𝑗+1,𝑘) (1.18)

where 𝑑𝑗,𝑘 = 𝐸Δ𝑦
(1+𝐸)𝑎𝑢

𝑗,𝑘
and 𝐸 =

Δ𝑡.𝑎𝑢
𝑗,𝑘

Δ𝑥Δ𝑦
with a similar definition for 𝑣𝑐

𝑗,𝑘.

25

1.5 Computational fluid dynamics modelling

4. Update pressure via

𝑝𝑛+1 = 𝑝𝑛 + 𝛼𝑝𝛿𝑝 (1.19)

where 𝛼𝑝 is the relaxation parameter.

5. Set

𝑢𝑛+1 = 𝑢* + 𝑢𝑐 (1.20)

ready for the next iteration (where 𝑢𝑛+1 effectively becomes 𝑢𝑛.

6. Go to step 1, unless the flow (and thus the pressure) has converged, eg.

steady flow has been achieved, or the maximum number of time-steps

have elapsed. Regarding relaxation parameters, the SIMPLE algorithm

has 𝐸 (equivalent to Δ𝑡) and 𝛼𝑝. According to [26], empirical evidence

from Patanker (1980) suggests that rapid convergence occurs when 𝐸 = 1

and 𝛼𝑝 = 0.8.

For familiarisation purposes, a small finite difference solver based upon the

SIMPLE algorithm was implemented in the C programming language. Details

of its construction, along with source code, are in appendix A.1.

Adaptations of SIMPLE: SIMPLEC and SIMPLER

SIMPLEC The SIMPLE algorithms tend to be slow to converge; Fletcher

[26] mentions Raithby and Schneider developing a more efficient algorithm.

They suggested that if 𝐸 ≈ 4 and 𝛼𝑝 is redefined as:

𝛼𝑝 =
1

1 + 𝐸
(1.21)

Then faster convergence is achieved. This as known as a Consistent SIM-

PLE algorithm, or SIMPLEC.

SIMPLER Also from the same book is Patankar’s revised SIMPLE algo-

rithm, SIMPLER, to answer the criticism of SIMPLE that the 𝛿𝑝 term was

often ineffective at converging the pressure field.

It can be shown that

26

1.5 Computational fluid dynamics modelling

𝑎𝑝
𝑗,𝑘𝛿𝑝𝑗,𝑘 =

∑︁
𝑎𝑝

𝑛𝑏𝛿𝑝𝑛𝑏 + 𝑏𝑝 (1.22)

can be rewritten as a discretised Poisson equation, namely:

∇2
𝑑𝛿𝑝 =

1

Δ𝑡
∇𝑑.𝑢

* (1.23)

Other changes from the SIMPLE algorithms are:

1. A velocity 𝑢̂ is calculated in a similar manner to 𝑢*, in SIMPLE, but

with the pressure terms removed.

2. The Poisson equation above is adapted to become a Poisson equation for

𝑝𝑛+1, and exchanging 𝑢̂ for 𝑢* in 𝑏𝑝, 𝑝𝑛+1 can be calculated.

3. The values for 𝑝𝑛+1 are then used to calculate 𝑢𝑐, which then gives us 𝛿𝑝

and thus 𝑢𝑛+1 = 𝑢𝑛 + 𝑢𝑐.

Whilst this is more computationally expensive than the SIMPLE algorithm

alone, it affords convergence in fewer iterations than its forebear.

1.5.2. Finite element

Finite element modelling adopts the line that finite difference and finite volume

techniques take, ie. carving up the solution space into finite chunks to evaluate

as discrete mesh, however its approach is altogether different.

With finite element techniques, the elements can be of arbitrary shape, such

as triangles or quadrilaterals (2D) or tetrahedra (3D). Moreover, the meshes

from which the elements are constructed do not have to be regularly spaced,

as they are with finite difference: this allows data-dense clusters of points

(and correspondingly small elements) at areas of interest, and larger elements

with low data-density in less important or varying parts of the solution space.

This, importantly, allows the concentration of computational resources where

it is needed. Based upon Chung [18] S5.6.2, this section will serve as a rough

overview of finite element analysis as applied to fluid dynamics. Index notation

is used throughout this section.

27

1.5 Computational fluid dynamics modelling

Suppose that we can write an approximation of the velocity 𝑢 and pressure

𝑝 as a series of basis functions:

𝑢𝑖(𝑥, 𝑡) = Φ𝑁(𝑥)𝑢𝑁𝑖(𝑡) (1.24)

𝑝(𝑥, 𝑡) = Ψ𝑁(𝑥)𝑝𝑁(𝑡) (1.25)

And the continuity equation as

𝑢𝑖,𝑖 = 𝜖(2)

=
𝜕𝑢𝑖

𝜕𝑥𝑖

= ∇.𝑢 (1.26)

where 𝜖(2) is the residual error of the continuity equation, and the momen-

tum equation:

𝜌𝑢̇𝑖 + 𝜌𝑢𝑖,𝑗𝑢𝑗 + 𝜌𝐹𝑖 − 𝜎𝑖𝑗,𝑗 = 𝜖
(1)
𝑖

= 𝜌
𝜕𝑢𝑖

𝜕𝑡
+ 𝜌

𝜕𝑢𝑖

𝜕𝑥𝑗

𝑢𝑗 + 𝜌𝐹𝑖 − 𝜎𝑖𝑗,𝑗

= 𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌(𝑢.∇)𝑢+ 𝜌𝐹𝑖 − 𝜎𝑖𝑗,𝑗 (1.27)

where

∙ 𝜖
(1)
𝑖 is the residual error of the momentum equation

∙ stress tensor is defined as 𝜎𝑖𝑗 = −𝑃𝛿𝑖𝑗+2𝜇𝑑𝑖𝑗(𝜇 is the dynamic viscosity)

∙ 𝜎𝑖𝑗,𝑗 = 𝜕𝜎𝑖𝑗

𝜕𝑥𝑗

The rate of deformation (tensor symmetric) is

𝑑𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)

=
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

) (1.28)

28

1.5 Computational fluid dynamics modelling

and hence we can write

𝜎𝑖𝑗,𝑗 =
𝜕

𝜕𝑥𝑗

[−𝑝𝛿𝑖𝑗 + 𝜇(
𝜕𝑢𝑖

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

)]

= −∇𝑝+
𝜕

𝜕𝑥𝑗

[𝜇(
𝜕𝑢𝑖

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

)] (1.29)

Since 𝜇 is constant, then we can re-express this:

𝜎𝑖𝑗,𝑗 = −∇𝑝+ 𝜇
𝜕2𝑢𝑖

𝜕𝑥2
𝑗

+ 𝜇
𝜕2𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗

= −∇𝑝+ 𝜇
𝜕2𝑢𝑖

𝜕𝑥2
𝑗

+ 𝜇
𝜕

𝜕𝑥𝑖

(∇.𝑢) (1.30)

Given the continuity equation for an incompressible fluid ∇.𝑢 = 0 we can

write the above as

𝜎𝑖𝑗,𝑗 = −∇𝑝+ 𝜇
𝜕2𝑢𝑖

𝜕𝑥2
𝑗

(1.31)

and therefore the momentum equation becomes

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌(𝑢.∇)𝑢+ 𝜌𝐹 𝑏𝑜𝑑𝑦 +∇𝑝− 𝜇∇2𝑢 = 𝜖(1) (1.32)

After employing the Galerkin method, Chung rewrites the momentum

equation as

𝐴𝑁𝑀 𝑢̇𝑀𝑖 +𝐵𝑁𝑖𝑅𝑀𝑢𝑀𝑖𝑢𝑅𝑗 + 𝐶𝑁𝑖𝑀𝑝𝑀 +𝐷𝑁𝑀𝑖𝑘𝑢𝑀𝑘 = 𝐸
(𝑏)
𝑁𝑖 + 𝐸

(𝑠)
𝑁𝑖 (1.33)

where 𝑁,𝑀,𝑅 = 1, 2....𝑟(𝑟 is the number of elements)

and

For time-dependent solutions, we write:

𝐴𝑁𝑀 𝑢̇𝑀𝑖 +𝐵𝑁𝑖𝑀𝑅𝑢𝑅𝑗𝑢𝑀𝑗 +𝐷𝑁𝑀𝑢𝑁𝑖 + 𝐶𝑁𝑖𝑆𝑃𝑆 = 𝐸𝑁𝑖 (1.34)

Where node indices 𝑁,𝑀,𝑅, 𝑆 = 1, 2...𝑟

and

29

1.6 Tidal modelling

𝐴𝑁𝑀 =
∫︀
Ω 𝜌Φ𝑁Φ𝑀𝑑Ω Mass matrix

𝐵𝑁𝑖𝑅𝑀 = −
∫︀
Ω

𝜌
2
Φ𝑁,𝑖Φ𝑅Φ𝑀𝑑Ω Convective matrix

𝐶𝑁𝑖𝑀 = −
∫︀
Ω Φ𝑁,𝑖Ψ𝑀𝑑Ω Pressure matrix

𝐷𝑁𝑀𝑖𝑘 = −
∫︀
Ω 𝜇(Φ𝑁,𝑗Φ𝑀,𝑗𝛿

𝑘
𝑖 + Φ𝑁,𝑗Φ𝑀,𝑖𝛿

𝑘
𝑗)𝑑Ω Dissipation matrix

𝐸
(𝑏)
𝑁𝑖 =

∫︀
Γ 𝜌𝐹𝑖Φ𝑁𝑑Γ Body force vector

𝐸
(𝑠)
𝑁𝑖 = 𝐸

(𝑠1)
𝑁𝑖 + 𝐸

(𝑠2)
𝑁𝑖 Surface force vector

𝐸
(𝑠1)
𝑁𝑖 =

∫︀
Γ 𝜎𝑖𝑗𝑛𝑗*Φ𝑁𝑑Γ 𝐸

(𝑠2)
𝑁𝑖 = −

∫︀
Γ

𝜌
2
𝑢𝑗𝑢𝑗𝑛𝑖 * Φ𝑁𝑑Γ -

𝑢̇𝑀𝑖 =
𝑢
(𝑛+1)
𝑀𝑖 −𝑢

(𝑛)
𝑀𝑖

Δ𝑡
or

𝜕𝑢𝑀

𝜕𝑡
= 1

Δ𝑡
(𝑢

(𝑛+1)
𝑀 − 𝑢

(𝑛)
𝑀)

and

[𝐴𝑁𝑀 + Δ𝑡(1− 𝜃)(𝐵𝑁𝑖𝑀𝑅𝑢
(𝑛+1)
𝑅𝑗 +𝐷𝑁𝑀𝛿𝑖𝑗)]𝑢

(𝑛+1)
𝑀𝑗 + Δ𝑡(1− 𝜃)𝐶𝑁𝑖𝑆𝑝

(𝑛+1)
𝑆 =

Δ𝑡𝐸
(𝑛+1)
𝑁𝑖 + [𝐴𝑁𝑀𝛿𝑖𝑗 −Δ𝑡𝜃(𝐵𝑁𝑖𝑀𝑅𝑢

(𝑛)
𝑅𝑗 +𝐷𝑁𝑀𝛿𝑖𝑗)]−Δ𝑡𝜃𝑝

(𝑛+1)
𝑆 (1.35)

Where 𝜃 is a relaxation parameter.

These equations are detailed in Chung, pp211; the reader is suggested to

pay particular attention to the definition of equation (5-92). For an explanation

of the Galerkin Method, see pp41. As an example of implementation of FEM

CFD, a small Fortran solver was written – see appendix A.2 for details.

1.6. Tidal modelling

This section surveys finite volume and finite element models that have been

constructed as numerical models on a variety of scales, from the estuarine with

dimensions of around 100 m, to global models with cells perhaps kilometres

across. In particular, the different approaches taken to balance accuracy with

computational complexity will be contrasted.

1.6.1. Finite difference methods

Finite difference methods in physical oceanography are formulated by carving

up the solution space, ie. the oceans bounded by their adjacent bathymetry,

30

1.6 Tidal modelling

into a regular grid. Whilst they may vary considerably from the SIMPLE

algorithm and its descendants, the essential premise of each is the same.

Depth-averaged models

Gjevik and Straume, 1989

Formulation Gjevik and Straume [33] constructed a two-dimensional

non-Boussinesq model to simulate tidal currents in the Arctic ocean and the

neighbouring Nordic waters. It is grid-based, implemented on a stereographic

map projection (see fig. 1.12).

Figure 1.12: A stereographic projection of the Arctic ocean

Rather than assuming a flat ocean-bed, they employ a depth-averaged

model, where the variation in ocean depth is taken into account through extra

terms in the momentum and continuity equations. They write the momentum

equations in Cartesian co-ordinates via the stereographic projection centred

on latitude 𝜑𝑠 as

𝜕𝑈

𝜕𝑡
− 𝑓𝑉 = −𝑚𝑔ℎ 𝜕

𝜕𝑥
(𝜂 − 𝜂) + 𝐴𝑥 +𝐵𝑥 (1.36)

31

1.6 Tidal modelling

𝜕𝑉

𝜕𝑡
+ 𝑓𝑈 = −𝑚𝑔ℎ 𝜕

𝜕𝑦
(𝜂 − 𝜂) + 𝐴𝑦 +𝐵𝑦 (1.37)

and the continuity equation as

𝜕𝜂

𝜕𝑡
= −𝑚2

[︃
𝜕

𝜕𝑥
(
𝑈

𝑚
) +

𝜕

𝜕𝑦
(
𝑉

𝑀
)

]︃
(1.38)

Where:

∙ 𝑓 = 2Ω sin𝜑 is the Coriolis parameter (𝜑 being degrees latitude)

∙ 𝑚 = 𝑎
𝑎𝑠

=
𝑟2+𝑟2

0

𝑟2
𝑠+𝑟2

0
is the map factor, 𝑎 = 1+sin 𝜑0

1+sin 𝜑
; 𝑚 = 1 at 𝜑𝑠 = 60𝑜. This

scales the model to take into account variations due to stereographic

projection.

∙ 𝜂 is the deviation of the sea surface height from its undisturbed position,

and 𝜂 the equilibrium tide

∙ ℎ is the undisturbed depth of the ocean

(For a complete set of definitions, see the paper).

What is important here is how they copy with an ocean of varying depth yet

highly anisotropic flow, which is a good approximation of large-scale currents.

To account for the increased drag in shallow waters, they introduce bottom

stress via the components 𝐴𝑥 and 𝐴𝑦; as in deeper waters ocean-bottom friction

will have less of an impact, drag forces due to this must decrease as the depth

of the ocean increases. They define this as

𝐴𝑥 =
−𝑘𝑈
ℎ

(1.39)

and

𝐴𝑦 =
−𝑘𝑉
ℎ

(1.40)

,

where 𝑘 is the bottom friction coefficient, itself defined as 𝑘 = 𝑐𝑟

√
(𝑈2+𝑉 2)

ℎ

and 𝑐𝑟 is a drag coefficient.

32

1.6 Tidal modelling

If we rewrite the above as

𝐴 = − 𝑐𝑟
ℎ2

√︁
(𝑈2 + 𝑉 2)𝑈 (1.41)

It can be seen that this is a quadratic friction law; used frequently in similar

models according to Schwiderski [65]. Alternatively, a linear friction law such

as the one below may by used:

𝑘 = 𝑐𝑓𝑢𝑠 (1.42)

where 𝑐𝑓 is the linear drag co-efficient and 𝑢𝑠 is a typical speed for tidal cur-

rents.

Viscous terms are also modelled – these are represented by the 𝐵𝑥 and 𝐵𝑦

terms:

𝐵𝑥 = 𝜈𝑚∇2𝑈 (1.43)

and

𝐵𝑦 = 𝜈𝑚∇2𝑉 (1.44)

where 𝜈 is the eddy viscosity, which varies with ℎ as 𝜈 = 𝑞ℎ and 𝑞 is a

constant, with a typical value of 100𝑚/𝑠.

Gvejik and Straume’s model has both coastal and open boundaries. For

coastal boundaries, the water is stationary, ie.

𝑈 = 0 (1.45)

𝜂 = 0 (1.46)

whereas along open (sea) boundaries, the velocity normal to the boundary

can be specified as

𝑈𝑛 = 𝑈𝑛𝑜 cos(𝜔𝑡− 𝛿𝑜) (1.47)

33

1.6 Tidal modelling

where 𝑈𝑛𝑜 is the amplitude, 𝜔 is the angular velocity of the tidal component

and 𝛿𝑜 is the phase lag. These constants are determined from empirical data.

Similarly, the sea-surface displacement can be written as

𝜂 = 𝐻𝑜 cos(𝜔𝑡−𝐺𝑜) (1.48)

Where 𝐻𝑜 is the amplitude of 𝜂; 𝐻𝑜 and 𝐺𝑜 are again calculated in a similar

manner to above.

Computational model Moving on to the numerical solution of these

equations, the Arakawa C grid was used, with a grid spacing of 50 km. The

grid was staggered, as the volume flux (𝑈, 𝑉) was calculated at separate points

to the sea-surface elevation 𝜂. For further details, consult the paper.

Measurements and empirical data For each point on the grid, the

depth of the ocean had to be determined from bathymetric charts. As this

data was sparse, and not be aligned with the grid points of the model, linear

interpolation was used to calculate the values of ℎ for each of the grid points.

For the open boundaries, volume flux and sea-surface elevation values were

gleaned from Schwiderski’s (1981) tidal charts and Flathers’ (1981) Atlantic

tidal model at the Proudman Oceanographic Laboratory.

For comparison with the model, actual values for the elevation 𝜂 and volume

flux (𝑈, 𝑉) were taken from 116 tidal stations in the Arctic Ocean and Barents

Sea area, shown in figure 1.13.

Gjevik, Nøst and Straume In this paper, a virtually identical model is

used to the above in section 1.6.1 to model the Barents Sea, except with greater

grid resolution (25 km). This paper does go into greater detail about how data

for the model is acquired, for both comparison and simulation. Boundary

conditions for the open boundaries were taken from the same source as Gjevik

and Straume [33]; with volume flux and elevation data taken from 46 tidal

stations, both coastal and open water, plus measurements from 30 mooring

34

1.6 Tidal modelling

Figure 1.13: Locations of the Arctic tidal stations (courtesy of Gjevik and

Straume)

stations – taken from various Norwegian institutions, namely the Norwegian

Hydrographic Service, and the Institute of Marine Science. In fig. 1.14 we can

see their locations plus depth contours.

In addition, they attempt to compute streaklines to see if there is a con-

nection between the streaklines calculated from tidal currents and rifts in the

sea ice, in order to validate the model.

Current profiling Up until this point, the vertical current profile has either

assumed a linear or quadratic form; Nøst presents a technique for extracting

two-dimensional depth-integrated models such as the two above, concentrating

on the Barents Sea [58].

Nøst employs equations very similar to the previous papers, however in

complex form. He explicitly writes the complex, depth-averaged velocity as:

𝑤̄ = 𝑢̄+ 𝑖𝑣 =
1

ℎ

∫︁ 0

−ℎ
𝑤𝑑𝑧 (1.49)

35

1.6 Tidal modelling

Figure 1.14: Mooring stations in the Barents Sea

and thus

𝜕𝑤̄

𝜕𝑡
+ 𝑖𝑓𝑤̄ = −𝑔(𝑆 + 𝑆) +

1

𝜌ℎ
(𝑇𝑜 − 𝑇ℎ) + 𝐿̄ (1.50)

where

∙ 𝑆 is the complex surface gradient 𝜕𝜂
𝜕𝑥

+ 𝑖𝜕𝜂
𝜕𝑦

, and 𝑆 the gradient for the

equilibrium tide

∙ 𝑇0 and 𝑇ℎ represent the shear stresses in complex form, at the surface

and at the ocean floor.

∙ 𝐿̄ is the friction caused by the depth-average velocity.

∙ 𝜌 the mean seawater density

At this point, the author goes on to describe the surface stress 𝑇0 induced by

pack ice, as this will surely have an impact on the vertical current profile in

Arctic regions (see paper for more details). Following from that, he divides

the current into the mean and the deviation from the mean, thus

36

1.6 Tidal modelling

𝑤 = 𝑤̄ + 𝑤′ (1.51)

This becomes, when inserted into his momentum equations from 𝑤 and

subtracting the depth-averaged part:

𝜕𝑤′

𝜕𝑡
+ 𝑖𝑓𝑤′ =

1

ℎ2

𝜕

𝜕𝑠

(︃
𝜈
𝜕𝑤′

𝜕𝑠

)︃
− 1

𝜌ℎ
(𝑇0 − 𝑇ℎ) (1.52)

Nøst employs the Galerkin method to this deviation into basis functions,

thus:

𝑤′ = 𝑤𝑛 = 𝑤𝑜(𝑠, 𝑡) +
𝑁∑︁

𝑟=1

𝑐𝑟(𝑡)𝑤𝑟(𝑠) (1.53)

where 𝑡 is time and 𝑠 is a proprietary vertical co-ordinate, such that 𝑠 = −1

at the seabed and 0 at the surface.

By assuming linear laws of friction, and zero surface stress he then forms a

trial solution. He then applies the Galerkin method to the momentum equation

for 𝑤′, and after some involved mathematics combining the eddy viscosity, ends

up with a description of the total current as:

𝑤 = (1− 𝑎𝑏)𝑤̄ +
𝑁∑︁

𝑟=1

𝐶𝑟(𝑡)𝐹𝑟𝑤𝑟(𝑠) (1.54)

Definitions of 𝐶𝑟(𝑡) and 𝐹𝑟 can be found in the paper; 𝑎𝑏 is a coefficient

representing the effect of friction from the seabed.

Figure 1.15 is a comparison of computing profiles with actual data from

a tidal station in shallow wate, with crosses indicating observed data. Figure

1.16 shows profiles for a sea covered in pack ice.

Clearly there is some correlation between actual and computed data; Nøst

concludes as much in his paper, however he also acknowledges the key effect

of bathymetry on current profiles. Realistic current profiles at smaller scales

(approx. 10 m) are required for the models developed in this PhD, and such

profiles are likely to vary considerably with irregularities on the sea floor.

Couch [19] uses depth-integrated equations to model tidal currents on a smaller

37

1.6 Tidal modelling

Figure 1.15: Computed current profiles from Nøst. The x-axis represents

horizontal speed, and the y-axis depth.

scale, eg. headlands and so on, and goes into great depth about topographic

and bathymetric eddy generation; he also deals with wind (ie. surface) stress.

General three-dimensional models

There are problems in introducing three dimensional Navier-Stokes equations;

the additional computational complexity involved may require a level of pro-

cessing power not readily available enough for such models to be pragmatic.

Marshal et al overcame this by separating their model into surface, non-

hydrostatic and hydrostatic components [50]; they employ some “physically

38

1.6 Tidal modelling

Figure 1.16: Current profiles for sea surface covered with pack ice, from Nøst.

The x-axis represents horizontal speed, and the y-axis depth.

motivated preconditioners” to take advantage of the fact that, where the hor-

izontal motion greatly exceeds vertical motion, common in oceanic currents,

the flow can be treated as hydrostatic. This simplification greatly reduces

the computing time required, allowing it to compete with existing hydrostatic

models.

The application of this model to physical oceanography is covered by Mar-

shal et al in their second paper [51].

Sigma coordinates

Sigma level models attempt to tackle the problems of resolving irregular bathy-

metric features and free surfaces by introducing the 𝜎 co-ordinate, which fol-

lows both the terrain and the ocean surface by replacing the 𝑧-components of

position and velocity.

Taking Kowalik and Murty [42] and Vreugdenhil [74] as our guide, the

transformation from z co-ordinate to sigma is defined as

𝜎 =
𝑧 − 𝜂

𝐷
(1.55)

39

1.6 Tidal modelling

Figure 1.17: The transformation from Cartesian to 𝜎 co-ordinates

where ℎ is the depth from the undisturbed sea surface, 𝜂 is the displacement

from equilibrium; 𝐷 = ℎ+ 𝜂 represents the depth of the water column.

Now suppose that the transformation from normal coordinates to sigma

coordinates is

(𝑥, 𝑦, 𝑧) ⇒ (𝑥̄, 𝑦, 𝜎) (1.56)

where

𝑥̄ = 𝑥, 𝑦 = 𝑦, 𝑡 = 𝑡

and that 𝜑 represents some quality or property of the fluid. We can then

write

𝜕𝜑

𝜕𝑥
=
𝜕𝜑

𝜕𝑥̄
− 𝜕𝜑

𝜕𝜎
(
𝜎

𝐷

𝜕𝐷

𝜕𝑥̄
+

1

𝐷

𝜕𝜂

𝜕𝑥̄
) (1.57)

𝜕𝜑

𝜕𝑦
=
𝜕𝜑

𝜕𝑦
− 𝜕𝜑

𝜕𝜎
(
𝜎

𝐷

𝜕𝐷

𝜕𝑦
+

1

𝐷

𝜕𝜂

𝜕𝑦
) (1.58)

𝜕𝜑

𝜕𝑧
=

1

𝐷

𝜕𝜑

𝜕𝜎
(1.59)

𝜕𝜑

𝜕𝑡
=
𝜕𝜑

𝜕𝑡
− 𝜕𝜑

𝜕𝜎
(
𝜎

𝐷

𝜕𝐷

𝜕𝑡
+

1

𝐷

𝜕𝜂

𝜕𝑡
) (1.60)

Writing

𝑄𝑥 = 𝜎
𝜕𝐷

𝜕𝑥
+
𝜕𝜂

𝜕𝑥
(1.61)

40

1.6 Tidal modelling

and

𝑄𝑦 = 𝜎
𝜕𝐷

𝜕𝑦
+
𝜕𝜂

𝜕𝑦
(1.62)

Now the vertical velocity can be written as

𝑤 = 𝐷
𝜕𝜎

𝜕𝑡
+ (𝜎 + 1)

𝜕𝜂

𝜕𝑡
+ 𝑢𝑄𝑥 + 𝑣𝑄𝑦 (1.63)

And by assuming incompressible fluid flow, the continuity equation can be

written as

𝜕𝐷𝑢

𝜕𝑥
+
𝜕𝐷𝑣

𝜕𝑦
+𝐷

𝜕

𝜕𝜎

𝜕𝜎

𝜕𝑡
+
𝜕𝜂

𝜕𝑡
= 0 (1.64)

Similarly, the momentum equations can be rewritten in sigma coordinates.

This type of model is popular mainly due to their similarity with more conven-

tional finite difference models, ie. those on regular grids, and due to their abil-

ities to deal with terrain and free surface. Yet, unlike the vertically-integrated,

shallow-water equations, they also allow more accurate simulation of the ver-

tical component of flow, especially boundary effects near the seabed, and also

the surface with wind-driven currents.

Huang and Spaulding [39] developed a sigma model to predict the disper-

sion of pollutants in estuaries, modelling salinity, temperature and the pol-

lutant via the continuity equations for fluid properties; turbulence was also

factored via 𝑘 − 𝜖 model – see ’turbulence’ section for details. A more generic

and flexible approach was taken by Drago et al [23], whose model featured

variable boundary conditions, allowing parts to become flooded, or conversely

empty as the sea-level changes. This would have particularly important conse-

quences for mass conservation in areas of estuaries, etc. where such a change

may affect the size of the computational domain, eg. tidal mud flats.

Sub-grid processes: turbulence

In finite difference models and indeed finite element models, there are effects

which occur at a resolution finer than the grid used, which can effect the

properties of the flow. This generally comes under the heading of turbulence

41

1.6 Tidal modelling

– sub-grid disturbances which have an associated viscosity of their own, called

eddy viscosity. One turbulence model that has risen to prominence is the 𝑘− 𝜖

model, which although not without its limitations, is widely understood. Li

and Zhu [46] deal with a 3D, sigma coordinate model for flow over submerged

objects; which may be of particular interest, since such a model could describe

turbulence generated from underwater marine turbine farms. Their model

deals with flow over a cube, which rests on the solid ’floor’.

Figure 1.18: Li and Zhu: flow over a cube generating turbulence

Good agreement was found with practical experiments, suggesting this may

be a viable approach to solving turbulent flow in such circumstances. Adaptive

grids in FE models however, may be able to overcome some of the complexities

in modelling sub-grid processes, since the size of the mesh cells can be varied

according to need.

1.6.2. Finite element methods

Finite element models have only recently emerged as viable alternatives to

finite difference methods in ocean modelling. It is suggested here that due to

their ability to adapt elements to irregular boundaries such as coastlines and

undulating sea beds, that they are perhaps better suited to the task; both two

dimensional and three dimensional models are discussed below.

42

1.6 Tidal modelling

Depth-averaged models

One example of a finite element technique being used on a local-scale model is

by Canu, Solidoro and Umgiesser [17] in their ecological model of the Venetian

Lagoon. In fig. 1.19 we can see how the lagoon was divided up in triangular

elements, the more densely packed areas representing the deeper channels:

Figure 1.19: Finite element simulation of the Venetian lagoon

Their simulation was a coupling of two models: one ecological (WASP)

and one fluid dynamic (SHYFEM) – we will concentrate on the fluid dynamic

model [72]. Based on the shallow water equations, for momentum:

43

1.6 Tidal modelling

𝜕𝑈

𝜕𝑡
+ 𝑔𝐷

𝜕𝜂

𝜕𝑥
+𝑅𝑈 +𝑋 = 0 (1.65)

𝜕𝑉

𝜕𝑡
+ 𝑔𝐷

𝜕𝜂

𝜕𝑦
+𝑅𝑉 + 𝑌 = 0 (1.66)

and for continuity:

𝜕𝜂

𝜕𝑡
+
𝜕𝑈

𝜕𝑥
+
𝜕𝑉

𝜕𝑦
= 0 (1.67)

where

∙ 𝑈 and 𝑉 are the vertically-integrated horizontal velocity components.

∙ 𝑅 = 𝑟
√

𝑢2+𝑣2

𝐷
is the friction coefficient; 𝑟 is a dimensionless parameter.

∙ 𝑋 and 𝑌 represent additional terms

Notice there are no molecular viscosity terms, since the shallow-water equa-

tions consider only inviscid flow; also, due to the scale of the model the Cori-

olis effect has been ignored. Numerically, for time-integration a semi-implicit

method is used. 𝜂, the water level, is solved implicitly via a non-linear sec-

ond order PDE. ie. through a combination of Thomas and ADI (alternating

direction implicit) algorithms:

𝜂𝑛+1 −
(︂

Δ𝑡

2

)︂2 𝑔

1 + Δ𝑡𝑅

(︃
𝜕

𝜕𝑥
(𝐷

𝜕𝜂𝑛+1

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐷

𝜕𝜂𝑛+1

𝜕𝑦
)

)︃
= 𝐾𝑛 (1.68)

where

∙ Δ𝑡 is the size of the discrete timestep

∙ 𝑔 is the acceleration due to gravity

∙ 𝐾𝑛 represents terms calculated from variables at 𝑛𝑡ℎ timestep

44

1.6 Tidal modelling

𝑈𝑛+1 and 𝑉 𝑛+1, the velocity components at the next timestep, are calcu-

lated explicitly as a function of variables at the 𝑛𝑡ℎ iteration. Finite elements

were used to discretise the model spatially; a staggered, triangular mesh was

used – this was generated via an automatic mesh generator and then manually

manipulated. Two different types of form function were used for 𝜂 and velocity

components; linear interpolation for 𝜂 and ‘stepped’ constant form functions

for velocity.

Figure 1.20: Finite element form functions – 𝜓𝑖 represents the form function

for the 𝑖𝑡ℎ node in the finite element mesh, and 𝜑𝑛 the solution in element 𝑛.

𝑗 is the index of nodes that neighbour node 𝑖.

Care was taken when applying the Galerkin method – if linear form func-

tions were applied directly to the velocity and surface elevation equations, the

model would not satisfy the continuity equation. By using staggered elements,

only the surface elevations of elements around a particular node are needed to

compute the velocities of the corresponding triangular elements; and by doing

so the model conserves mass.

Furthermore, the lagoon is tidal and contains flats that are submerged in

shallow water, but not at low tide. The authors employed a simple drying and

wetting mechanism; if the water level of one of an element’s nodes fell below a

minimum value (5 cm is quoted), the element is considered ‘dry’ and removed

from the calculations. Similarly, neighbouring nodes gain a water level higher

than this minimum value, the element is is considered ’wet’ and reintroduced

45

1.6 Tidal modelling

into the simulation.

Three dimensional models

Topography and bathymetry, as has already been mentioned, have a strong

effect on the nature of tidal flow [32]. Further to that, the sea bed and coast-

lines often have irregular, complex geometry (such as narrow straits, steep

submarine slopes, islands, etc.), which cannot accurately be represented by

regular meshes and finite difference models, nor the flow that results therein.

Thirdly, especially on smaller scales, eg. headlands and islands, the hydrostatic

approximation is no longer valid and depth-integrated or shallow-water equa-

tions cannot be used as the vertical component of velocity can no longer be

ignored, and vertical profile of the horizontal velocity components may not be

easily approximated as in previously mentioned papers, or even more recently

in Umgiesser et al [72].

Finally, three-dimensional finite element models with irregular meshes, ie.

variable-sized elements, can both horizontally and vertically concentrate finer

spatial resolution – thus computing resources – on areas where it is most

needed, such as areas of turbulent flow. This allows larger simulations to be

tackled than may be permitted with Finite Difference models, even terrain-

following 𝜎 ones [23] ; it also brings with it its own problems due to the inho-

mogeneous mesh-spacing, such as unphysical wave scattering. Despite previous

work on three-dimensional FEM for fluid dynamics, especially for parallel do-

main decomposition [76], until very recently, most tidal FEM simulations were

almost completely restricted to two-dimensional depth-integrated coastal mod-

els, although there have been attempts to lay the foundations for global models

eg. Legrand [43]. Speculatively speaking, processing power and the previous

lack thereof, may have played a part in the dearth of three-dimensional models.

Fixed meshes In their 2003 paper, Nechaev et al [57] present a diagnostic,

ie. steady-state FEM; it uses a quasi-unstructured mesh based upon tetrahe-

dral elements. Their mesh is generated in four steps:

46

1.6 Tidal modelling

1. The sea surface is tessellated with triangular facets.

2. The corners of these are then projected downwards, forming triangular

vertical columns; triangulating the sea floor.

3. The columns are divided into horizontal layers.

4. Each layer of each column is then subdivided into one to three tetrahedra.

This is better exemplified with diagrams reproduced from the paper – figure

1.21 shows a plan view of the triangulation of the sea surface (the dark blue

areas represent deeper waters), and in fig. 1.22 there is a cross-section of the

vertical mesh structure below, with temperature colour map.

Figure 1.21: Plan view of Nachaev’s finite element mesh. The darker areas

represent deeper parts of the ocean; light blue represents the shallower regions.

As can be seen, it is not a truly irregular mesh. Their model uses Galerkin

projection to achieve the discretisation of the governing equations. Simi-

larly, Danilov, Kivman and Schröter [21] introduced a prognostic model which

could either operate on a two-dimensional unstructured triangular mesh and

vertically-integrated velocities, or a three-dimensional mesh based on tetrahe-

dra, of similar structure to Nehchaev. Salinity, temperature and the horizontal

velocity components are linear interpolated across the mesh, whereas the ver-

tical component of velocity, 𝑤, is in their words ‘elementwise constant’: ie. a

47

1.6 Tidal modelling

Figure 1.22: Vertical cross-section of Nachaev’s finite element mesh, coloured

by temperature – red is warmer than blue.

3D equivalent of the stepped constants in Umgiesser and Bergamasco’s model.

Rather than use the standard Galerkin method for discretising the Navier-

Stokes and primitive equations, they use the Galerkin Least Squares method

to combat instability (see paper for details, pp134-140).

Adaptive meshes One of the main problems with fixed meshes, irregular or

not, is that while they have the ability to have varied resolution, with a finer

mesh near points of interest, ie. large velocity gradients, they cannot change

these locally concentrated areas. There are many features of the flow that may

require greater spatial accuracy with the progression of time; turbulent wakes

and eddies are but two. While one option may be to increase the resolution of

the mesh in paths or areas where such phenomena are likely to occur prior to

the simulation run, this also increases the wastage of processing power – once

an eddy has passed downstream, or the flow has become less violent, fewer

mesh nodes (and thus elements) may be sufficient for accurate modelling. In

this case, what is needed is an adaptive mesh; a mesh where mesh points can

48

1.6 Tidal modelling

be added, removed, or even moved to raise or lower the level of accuracy as

required.

Huang and Russell introduced an adaptive method for a two-dimensional

gradient flow problem in their 1999 paper [38]. Dynamically adaptive – while

the number of mesh nodes remains fixed, the nodes are moved towards regions

of the space-time domain where the solution gradient is steep; doing so will

minimise errors. This is facilitated by what is known as a monitor function

which gives some measure of potential error and the mesh points are moved

accordingly.

Mesh adaptation, as applied to ocean modelling, is covered in detail by

Piggot et al [64]. Specifically, they discuss h adaptivity (static mesh points,

with varying number of mesh nodes), r adaptivity (moving mesh nodes) and hr

adaptivity, which is a combination of the other two. For optimising h adaptive

meshes, they introduce what they call an objective functional, as a measure of

local mesh accuracy (see paper for justification):

𝐹𝑒 =
1

2

∑︁
𝑙∈𝐿𝑒

(𝑟𝑙 − 1)2 + (
𝛼

𝜌𝑒

− 1)2 (1.69)

where

∙ 𝐿𝑒 is the set of edges for element 𝑒

∙ 𝑟𝑙 is the length, with respect to the edge-centred metric tensor, of side 𝑙

∙ 𝜌𝑒 is the radius of the largest sphere that can fit in element 𝑒.

∙ The second term (𝛼
𝜌𝑒
− 1)2 takes the value of 0 for an element with an

aspect ratio of 1, and from this 𝛼 can be calculated.

Through minimising the function 𝐹𝑒, mesh optimisation is achieved – this

is typically done by splitting elements, collapsing edges, etc. Such methods,

however, cannot track moving features of flow, for instance, fronts and eddies.

In such circumstances, an h adaptive method would remove points as the

49

1.6 Tidal modelling

feature progressed and add them elsewhere to keep the mesh well-resolved;

this is an inefficient process.

Moving mesh methods (or r adaptive methods) somewhat similar to Huang

and Russell’s are better suited to these conditions. They present three meth-

ods: mesh smoothing based node movement, variational based mesh move-

ment, and free surface mesh movement. Mesh smoothing methods rely on an

error measurement similar to the h method; the physical analogy drawn here

is a series of springs of varying stiffness, and by minimising the local energy

of the springs, you minimise error. In fig. 1.23 there are six triangular el-

ements arranged in a hexagon. The left hand hexagon represents the intial

node position, and the right hand one represents the local energy minimised

state; variational based methods are using variational techniques to equally

distribute the error.

Figure 1.23: Finite element mesh r adaption

Thirdly, free surface mesh movement can be used to represent the free

surface in ocean models. In unstructured meshes, a change in the surface

elevation 𝜂 is passed down through the mesh by interpolation – as shown in

fig. 1.24, there are simularities with 𝜎 layers in finite difference models.

Figure 1.24: An hr-adaptive free surface at different times

However, h and r adaptive methods both have advantages and disadvan-

tages. As stated above, h methods have the advantage of being able to concen-

trate computing power in particular instances, increasing the number of nodes

50

1.6 Tidal modelling

where more are needed, and conversely removing nodes when less are needed to

maintain an adequate accuracy of solution. While having disadvantages, this

reduces the computational complexity of the problem. r adaptive methods on

the other hand, have the ability to move mesh nodes towards areas with steep

solution gradients, but cannot reduce the number of nodes used in the finite

element mesh; thus it is feasible that at some stage a higher order of accuracy

is maintained than is needed, wasting computing power on unnecessarily fine

detail.

Clearly, a combination of the two methods – an hr adaptive method, would

be desirable. Unfortunately there are few examples of this in literature ac-

cording to Piggot; approaches vary from coupling a two dimensional moving

mesh method to an h-adaptive method which locally alters the mesh to achieve

the desired error tolerance, to splitting the solution domain into regions where

h and r adaptive methods can be applied separately as appropriate. At the

time of writing, Imperial college’s ICOM/Fluidity [60] is the only known ro-

bust hr-adaptive CFD software tailored to three dimensional oceanographic

models.

51

Chapter 2

CFD package validation

2.1. Introduction

Fluidity, a computational fluid dynamics software package from Imperial Col-

lege, was decided upon as the foundations on which the turbine model would

be built. It was originally developed for oceanographic applications, but is

now emerging as a versatile model for a broader range of systems. To validate

this software, the well-known problem of laminar flow over a flat plate was

modelled and compared with analytic solutions, as well as those found with

COMSOL, which has a CFD solver. This chapter represents parts of a paper

submitted to the journal Computers & Fluids, by Dr Wolf Früh and Angus

Creech, which is still in review at the time of writing.

2.2. About Fluidity

Fluidity [63] was originally developed for oceanographic applications [28] [29]

[60], but is now emerging as a versatile model for a broader range of systems.

One of the particular strengths of the Fluidity code is the adaptivity of the

mesh whereby both the number of nodes and the position of each node can be

adjusted to provide best resolution where it is required at minimum computa-

tional cost.

2.3. Boundary layer theory

The simplest model to describe the evolving boundary layer in the confined

channel with a no-slip condition at the bottom of the channel and a stress-free

condition at the upper boundary can be obtained from a minor modification

52

2.3 Boundary layer theory

of the standard boundary layer development over a flat plate. The starting

point is the von Karman integral momentum equation which states that the

growth of the boundary layer, as measured by the momentum thickness, 𝜃,

is proportional to the wall shear stress, 𝜏𝑤 normalised by 𝜌𝑢2
𝐹 , 𝑢𝐹 being the

freestream velocity:

𝑑𝜃

𝑑𝑥
=

𝜏𝑤
𝜌𝑢2

𝐹

(2.1)

Where 𝑥 is the vertical distance from the plate. Rather than developing the

theory in terms of the momentum thickness, we will use the equation above

to derive one for the displacement thickness, 𝛿*. The reason is that this is

the measure of the boundary layer which is most easily and reliably computed

by the computational models used here. Following the assumption that the

velocity profile in this modified situation is the Blasius profile, we can convert

(2.1) to an equation for the displacement thickness using the standard laminar

boundary layer equation and known conversion factors between the momentum

thickness 𝛿, 𝛿*, and 𝜃 (see [52]).

The conversion factor between the displacement and momentum thickness

is

𝛾1 =
𝛿*

𝜃
= 2.586 (2.2)

Variational based methods use variational techniques to equally distribute

the error, in a similar manner to Huaug and Russell [38]. The conversion factor

between the displacement thickness and the boundary layer thickness is

𝛾2 =
𝛿*

𝛿
= 0.344 (2.3)

and the standard solution for the momentum thickness is

𝜃

𝑥
= 𝛾3𝑅𝑒

−1/2 (2.4)

with 𝛾3 = 1.66.

Scaling the definition of the wall shear stress by 𝑢𝐹 and 𝛿, respectively gives

53

2.3 Boundary layer theory

𝜏𝑤 = 𝜇

(︃
𝑑𝑢

𝑑𝑦

)︃
𝑦=0

=
𝜇𝑢𝐹

𝛿

(︃
𝑑𝑢*

𝑑𝜂

)︃
𝜂=0

=
𝛾2𝛾3𝜇𝑢𝐹

𝛿*
(2.5)

where 𝑢* and 𝜂 are the nondimensional velocity and wall distance.

Inserting these factors into (2.1) yields

𝑑𝛿*

𝑑𝑥
=
𝛾1𝛾2𝛾3𝜇

𝜌𝑢𝐹 𝛿*
≡ 𝐴

𝛿*
(2.6)

where 𝐴 = 1.477
(︁

𝜇
𝜌𝑢0

)︁
is a constant, relating the constants describing the

chosen boundary layer velocity profile and the flow conditions.

The modification to the standard boundary layer equation required to take

into account the finite height of the domain is in the recognition that the free-

stream velocity, 𝑢𝐹 , is not constant over 𝑥 but adjusts as the boundary layer

grows to maintain the mass flux through the domain. As the available cross

section of the channel is effectively reduced by the displacement thickness, the

initial inlet velocity, 𝑢0, over the full height, 𝐻, has to increase according to

𝑢0𝐻 = 𝑢𝐹 (𝐻 − 𝛿*) (2.7)

Replacing the velocity 𝑢𝐹 in (2.6) by 𝑢𝐹 =
(︁

𝑢0𝐻
𝐻−𝛿*

)︁
results in an additional

dependence on the boundary layer thickness as

𝑑𝛿*

𝑑𝑥
= 𝐴

(︂
1

𝛿*
− 1

𝐻

)︂
(2.8)

Considering the two extreme situations, it can be seen that the above

equation approaches (2.6) when the boundary layer is much thinner than the

fluid depth but that the growth of the boundary layer approaches zero as the

boundary layer thickness approaches the fluid depth.

Equation (2.8) can be solved analytically as

𝐴𝑥 = 𝐻2 ln
(︂

𝐻

𝐻 − 𝛿*

)︂
−𝐻𝛿* (2.9)

which is illustrated for a number of values of 𝐻 in figure 2.1 as the dis-

placement thickness against the scaled downstream distance from the leading

54

2.4 Computational models

edge, 𝐴𝑥. The solid curve labelled with ∞ is that of the standard developing

Blasius layer. The limiting of the layer thickness by the upper boundary is

immediately obvious, and it can also be seen that the displacement thickness

is below the Blasius solution even in the early stages of the boundary layer

development.

2.4. Computational models

Two computational models for laminar flow over the flat plate were used.

Firstly, a three-dimensional model was run within Fluidity; a second, two-

dimensional fixed-mesh approximation of the same model was run with the

finite element package COMSOL (based on MatLab), for comparison and vali-

dation. First we shall introduce the Fluidity model in detail, and then describe

the COMSOL model.

2.4.1. Adaptive-mesh, 3D finite element model in Fluidity

This was a cuboid volume of dimensions 250× 10× 𝑧𝑡𝑜𝑝, containing an incom-

pressible fluid of density 1.0 units. The volume was computationally divided

into two parts as seen in figure 2.2:

1. The entry length section at 0 < 𝑥 < 50. Its existence shall be explained

in section 2.4.1.

2. The flat plate section, at 50 ≤ 𝑥 < 250.

In addition, the following boundary conditions were imposed:

1. Inflow boundary: at 𝑥 = 0, the Dirichlet condition of 𝑢 = 𝑢0 = (1, 0, 0)

was imposed; this is the fluid influx.

2. Outflow: At 𝑥 = 250, von Neumann condition 𝜕𝑢𝑛

𝜕𝑥𝑛
= 0 where 1 ≤ 𝑛 ≤ 3

(open).

3. Side boundaries: for 𝑦 = 0 and 𝑦 = 10 , Dirichlet 𝑣 = 0 and von

Neumann 𝜕𝑢𝑛

𝜕𝑥𝑛
= 0 where 𝑛 ∈ (1, 3): a slip condition with frictionless

sides.

55

2.4 Computational models

Figure 2.1: The displacement thickness against the scaled downstream distance

from the leading edge, using 𝐴 = 1 and the fluid depths as indicated by the

legend. The infinity symbol represents the Blasius layer development in an

unbounded fluid

Figure 2.2: Side view of the flat-plate model.

56

2.4 Computational models

4. Top boundary: for 𝑧 = 𝑧𝑡𝑜𝑝, slip condition (frictionless lid).

5. Bottom of entry length area: for 𝑧 = 0, slip condition as above.

6. Plate boundary: or 𝑥 ≥ 50 and 𝑧 = 0, Dirichlet 𝑢 = 0; a no-slip

boundary.

The entry length section

Most descriptions of boundary layer problems involving flat plates impose the

Dirichlet condition for the inflow directly adjacent to the no-slip condition for

the plate boundary. In Fluidity, however this creates a discontinuity of the

prescribed velocities at the leading edge of the plate, resulting in a velocity

gradient that grows as the mesh becomes fine. Therefore if the adaptive algo-

rithm increases the resolution to reduce these gradients it is ultimately bound

to fail, and can results in either unrealistic flow artifices or a solver error.

Consequently with an entry length introduced this instability disappeared,

and – as will be seen later – the pressure gradient generated caused the bound-

ary layer to effectively spread out, even at lower viscosities.

The computational volume

The ideal model for laminar flow over a flat plate assumes a semi-infinite

expanse of fluid in the vertical and positive x directions, which has a free-stream

velocity of 𝑢0; this is also the Dirichlet condition at the leftmost boundary.

However, as Fluidity works in a finite computational domain, sensible di-

mensions had to be chosen. The criteria for these were:

1. Large enough range for 𝑥: The plate had to be sufficiently long so

that the boundary layer developed fully beyond the initial leading edge.

Furthermore, the entry length had to be large enough to accomodate the

changes in flow upstream due to the onset of boundary forces at the start

of the plate.

2. Small enough range for 𝑦: The theory assumes essentially two-dimensional

flow, and so the width of the model had to be limited to suppress the pos-

57

2.4 Computational models

sibility of three dimensional flow features evolving. However by keeping

the Fluidity models three dimensional, extending the analysis to include

spanwise motion would remain an option later.

3. Large enough range for 𝑧: By doing so, we reduce the effect of ac-

celerate of the freestream velocity. The fluid had to be deep enough to

ensure the fully-evolved boundary layer would only be a fraction of the

total depth.

By increasing 𝑧𝑡𝑜𝑝 as far as is possible within memory and processor

constraints, 𝑧𝑡𝑜𝑝 ≫ 𝛿*(where 𝛿* is the displacement thickness, which for

laminar flow 𝛿* ≈ 0.33𝛿), and thus the acceleration of the fluid is kept

to a minimum. This should allow direct comparisons with the analytic

descriptions of vertical velocity profiles. Despite the decrease in resolu-

tion this will cause, Fluidity’s adaptive meshing techniques should allow

it to ultimately increase the resolution of the model where it is needed,

and decrease it where it is not – and thus be able to accurately resolve

flow near the flat plate.

Model dimensions

Three simulations were run, each with a different viscosity, safely with in the

Reynolds numbers for laminar flow, ie. 𝑅𝑒≪ 105. In each instance, care was

taken that the timestep size Δ𝑡 and the total simuation time 𝑡𝑚𝑎𝑥 were set to

ensure the smooth evolution to stable, time-independent flow. To ensure that

the size of the model would not unduly affect the development of the boundary

layer, for each value of the kinematic viscosity 𝜈, the model’s height 𝐻 was

calculated so that the maximum of theoretical boundary layer thickness 𝛿* was

no more than 3% of 𝐻, ie.

𝐻 >
𝛿*

0.03
(2.10)

For laminar flow of incompressible flow, 𝛿* can be taken [52] as 0.334𝛿

where 𝛿 is the z-coordinate of the boundary layer, defined as:

58

2.4 Computational models

𝛿 = 4.99

(︃
𝑥𝑝𝑙√
𝑅𝑒𝑥

)︃
(2.11)

where 𝑥𝑝𝑙 is the distance from the plate, and 𝑅𝑒𝑥 the Reynolds number of

the flow.

It can be shown that max(𝛿*) occurs at the outflow on the right of the

model, where 𝑥 = 250, and from this 𝐻 was calculated to a rounded-up value.

Case # 1 2 3

Kinematic viscosity 𝜈 0.01 0.1 1.0

Reynolds number 𝑅𝑒 20000 2000 200

Channel length 𝐿 250 250 250

Channel width 𝑊 10 10 10

Channel depth 𝐻 100 500 800

Constant in (refvKSol) 𝐴 0.01477 0.1477 1.477

Displacement thickness 𝛿* 2.35 7.44 23.5

Table 2.1: Model parameters and theoretical momentum thickness for the

Fluidity simulations. The Reynolds number is that at the trailing end of the

plate of length 200, 𝑅𝑒 = 200 𝑢0

𝜈
, and the displacement thickness is that found

from (2.9) (with the constant 𝐴 as given here). All parameters are in unit

lengths apart from 𝜈, which is unit pressure · unit time.

Mesh adaptivity settings

For 𝜈 = 0.01, the interpolation errors on the velocity components were set to

𝑢 = 0.025, 𝑣 = 1.0 × 1010, and 𝑤 = 0.0025. More specifically, minimum and

maximum element lengths for each dimension were geared to ensure greater

adaptive sensitivity for the 𝑥 and particularly 𝑧 components, as there is neg-

ligible flow in the 𝑦 direction due to the nature of the model. The overall

maximum element size was set to 10 units; the minimum 0.01.

At higher viscosities, these settings were scaled to larger values, especially

in the 𝑧 direction. This would allow a similar number of nodes to be used

59

2.4 Computational models

despite the greater volume, the greater interpolation errors compensated by

the lower velocity gradients theory predicts.

2.4.2. Fixed-mesh 2D finite element model in COMSOL

As mentioned before, this software was used to provide cross-validation of

Fluidity’s simulations. A two-dimensional model, effectively just the side view

of the simulation seen in figure 2.2, was constructed within COMSOL; prior

to directly comparing it with Fluidity, a parametric study was carried out by

varying the Reynolds number whilst preserving the domain geometry.

Model dimensions

The model used variables that were scaled against a plate length of 𝐿𝑝 = 1.

The fluid depth was 𝐻 = 0.4, and the entry length 0.25, giving the same aspect

ratio as the Fluidity simulation. Also scaled were the inflow velocity and the

density, with 𝑢0 = 1 and 𝜌 = 1. Therefore the Reynolds number of the system

can be written as the direct inverse of 𝜈, the kinematic viscosity.

Boundary conditions

The boundary conditions were as before, with a Dirichlet condition of 𝑢 = 𝑢0

at the inlet on the left, a frictionless rigid lid at the top, and a Von Neumann

condition of 𝑑𝑢
𝑑𝑥

= 0 (zero pressure) at the outflow on the right. The lower

boundary had a no-slip condition at the plate section only.

Mesh settings

Three different meshes were used. Two of these concentrated elements near

the lower boundary; the first with 3303 elements, the second with 16853. The

third mesh also had 16853 elements, but these were evenly distributed. This

was used for some cases of flow at low Reynolds numbers.

Variation of Reynolds number

The solution procedure for the parametric study was to initialise the model

for a Reynolds number of 𝑅𝑒 = 1 with an initial guess for the solution for the

60

2.5 Results

steady-state solver as a uniform flow with horizontal velocity, 𝑢 = 𝑢0, and zero

vertical velocity everywhere, and then to iterate to a steady-state solution of

that flow. The integration for 𝑅𝑒 = 2 was then a continuation of the solution

for 𝑅𝑒 = 1, and so on up to a final Reynolds number of 𝑅𝑒 = 105 in increasing

steps of Reynolds number.

2.5. Results

2.5.1. Fluidity, adaptive mesh

For each set of results, 6 columns of velocity data were extracted from the final

time step at 𝑥 = (0, 50, 100, 150, 200, 250) using barycentric coordinates (see

appendix). For each set of data, the data columns were plotted in figure 2.3

as (𝑥′, 𝑧), where 𝑥′ is a transformation of 𝑥

𝑥′𝑛 = 𝑥𝑛 20(𝑢− 𝑢0) (2.12)

for the 𝑛𝑡ℎ column with 𝑛 = 1, 2, ...6.

This was designed to demonstrate the progression of the velocity profile

downstream from the edge of the plate. Additionally, by placing vertical lines

at 𝑥 = 0, 50, ..., 250, the approach to a freestream velocity 𝑢𝐹 lim𝑢0 can be

seen. Lastly, the line originating at the leading edge and growing towards

the end of the domain represents the theoretical edge of the boundary layer,

defined as where the velocity profile reaches 99% of the freestream velocity,

given by (2.4).

All results conform largely to the theoretical laminar boundary layer, in

particular, the calculated boundary layer thickness as indicated by the crossing

of the velocity profiles with the line showing the boundary layer thickness, 𝛿.

Some features, however, are at variance to the simple theory. The velocity

profile calculated at the leading edge shows a finite boundary layer thickness

for all three cases. Another effect which is especially noticable at larger vicosity

is a slight bulge in the velocity profiles just above the boundary layer at 𝑥 = 100

and further downstream.

61

2.5 Results

Figure 2.3: Fluidity vertical velocity profiles at regular intervals along the

plate, together with the boundary layer thickness of the standard Blasius so-

lution. (a) Case 1 with 𝜈 = 0.01 and (b) Case 2 with 𝜈 = 0.1.

62

2.5 Results

Figure 2.4 compares the results with a parabolic approximation of the Bla-

sius profile, ie.

𝑢(𝑧) = 𝑢0

[︃
2𝑧

𝛿
−
(︂
𝑧

𝛿

)︂2
]︃

(2.13)

where 𝛿 is the theoretical boundary layer height.

This was plotted for the four velocity profiles at 𝑥 = (100, 150, 200, 250). All

graphs have a truncated range in the vertical position, z, for greater legibility

of features. As the parabolic profile is only defined up to a wall distance of

𝑧 = 1, these profiles are only plotted up to that value.

One feature, clearly seen in fig. 2.3(a) at the lower viscosity is that the

theoretical profile is almost identical to the calculated profile at 𝑥 = 100 but

that the velocities according to the parabolic profile are progressively less than

those calculated by the model. Another feature is most prominent at the

highest viscosity in figure 2.4(b). While the theoretical profiles are always

monotonically increasing towards the free-stream velocity (and then by im-

plication stay constant), the model profile overshoots and then reduces to a

contant free-stream velocity, which is always slightly greater than the inflow

velocity and increases with distance from the leading edge. While the increase

of the final free-stream velocity above 𝑢0 is consistent with the theory in sec-

tion 2.3, the velocity bulge separating the boundary layer from the free stream

is somewhat surprising and will be addressed in section 2.6.

2.5.2. COMSOL, fixed mesh

Figure 2.5 shows the displacement thickness of the developing boundary layer

against the distance from the leading edge for a selection of Reynolds numbers.

As expected, the boundary layer is thicker for smaller values of the Reynolds

number, but a number of features deviate from the behaviour expected by

the theoretical analysis in section 2.3. At the lowest values of the Reynolds

number, the growth of the boundary layer is not continuous but seems to reach

a plateau before a further increase terminated by a final drop. The plateau is

63

2.5 Results

Figure 2.4: Comparison of vertical profiles of the streamwise velocity from the

3D adaptive model with the parabolic approximation of the standard laminar

boundary layer. (a) Case 1 with 𝜈 = 0.01 and (b) Case 3 with 𝜈 = 1.0.

64

2.5 Results

a robust feature of the solution for all meshes used. The final drop may be an

artefact of the uniform outflow conditions at 𝑥 = 1.

Figure 2.5: Development of the displacement thickness, calculated by the 2D

fixed-mesh model for a selection of Reynolds numbers.

A further point to note is the fact that the presence of the plate has

a significant upstream influence on the boundary layer. Even for relatively

high Reynolds numbers, the flow experiences a slowing down near the lower

boundary and a consequent acceleration in the flow interior as early as the

left boundary. The generic shape of the boundary layer seems to be an ini-

tial slow growth, followed by a rapid increase which appears consistent with

a square-root growth, and later on either by a progressively slower growth of

the boundary layer or an approach to a limiting depth.

Another point to note is the spike of the displacement thickness at 𝑅𝑒 =

2× 104. This is clearly an artefact of the model resolution, as integrations at

the higher resolution were characterised by a smooth boundary layer growth

for Reynolds number up to 𝑅𝑒 = 105. Beside the insufficient resolution at

the leading edge, the overall solution at 𝑅𝑒 = 2 × 104 was insensitive to the

resolution, including the evolution of the boundary layer further downstream

from the leading edge. At higher Reynolds number still, 𝑅𝑒 = 5 × 104 and

65

2.5 Results

𝑅𝑒 = 105, the expected boundary layer was comparable to the mesh size at

the lower resolution. As a result, the thickness at the trailing edge approaches

a limit given by the model resolution, as is demonstrated by figure 2.6 which

shows the displacement thickness at the trailing edge against the Reynolds

number for the Blasius layer, the theoretical model, and the 2D fixed-mesh

Finite Element model at both levels of resolution. The Blasius solution, given

by the dotted line follows the 𝛿* ∝ 𝑅𝑒1/2 law, and the theory developed in

section 2.3 follows this largely although it gives a slightly deeper layer above

a Reynolds number of 𝑅𝑒 = 20. The clear deviation from the Blasius layer

is at low Reynolds numbers, where the boundary layer is thick enough to fill

a substantial portion of the fluid depth, and therefore feels the influence of

the upper boundary. The results from the Finite Element model are largely

similar to those from the theory. Below 𝑅𝑒 ≤ 1000, the computational model

underpredicts the boundary layer and approaches a limiting value which is

about a third of the channel depth while the channel depth itself is the the

limiting value given by the theory. The stronger limiting effect of the finite

channel depth is also reflected in the development of the boundary layer for

𝑅𝑒 = 20 and even more for 𝑅𝑒 = 2 in figure 2.5 with the flattening of the

curve.

Since the integrations of the adaptive model showed a velocity bulge at

the top of the boundary layer (cf fig. 2.3), the velocity profiles from the 2d

model are also analysed and compared against the Blasius solution. Figure 2.7

shows two example profiles (dash-dotted lines) , normalised by the maximum

velocity and the point at which this is reached. Superimposed on these is

the Blasius solution In all cases shown here, the velocity reduces again above

the maximum velocity. At the higher Reynolds number, which is in a region

where the final displacement thickness is close to the theoretical value (cf fig.

2.6), the reduction is very slight. In this case, the velocity profile is virtually

indistinguishable from the Blasius solution. At the lower Reynolds number,

however, which is in a region where the channel depth begins to limit the

boundary layer, according to figure 2.6, there is a pronouned jet above the

66

2.5 Results

Figure 2.6: Comparison of the displacement thickness at the trailing edge of

the plate against Reynolds number. The fluid depth is 𝐻 = 0.4. The dots are

the solutions of the finite-element model, the open circles from the theoretical

model, and the dotted line shows the standard Blasius layer.

67

2.5 Results

boundary layer, and the velocity profile is noticeably different from the Blasius

solution.

It is now possible to cross-validate the different models with each other

and against the simple theory. It is safe to assume that the two computational

models are fully independent since the software packages were developed en-

tirely independently, and also their respective configurations in this case are

very different; one model was a 2D steady model with a fixed mesh while the

other was a 3D time-dependent model with an adaptive mesh. In the first

instance, a comparison of the general velocity profies and their evolution in

figures 2.3 and 2.7, demonstrates that both models result in, at least qualita-

tively, similar velocity fields which are largely consistent with the theoretical

laminar boundary layer, especially if the boundary layer thickness is only a

small fraction of the channel depth.

Figure 2.7: Velocity profile from integrations of the high-resolution model at

a Reynolds number of (a) 𝑅𝑒 = 100 and (b) Re = 1000, respectively, at

positions 𝑥 = 0.2 and 𝑥 = 0.9 (both dash-dotted). The solid curve is the

standard Blasius layer.

In contrast to the theory but internally consistent, both types of models do

not show the standard approach to a free stream velocity which then remains

constant over the remainder of the channel. Instead, the velocities reach a

value larger than the expected free-stream velocity and then reduce to a final

68

2.6 Comparison between Fluidity and COMSOL

free-stream velocity which is between the inflow velocity and that maximum.

It is argued here that the bulge is not an artefact but a physical effect caused by

the finite fluid depth. As the boundary layer develops, the average velocity in

the fluid interior has to increase to maintain the mass flux through the channel.

Streamlines within and near the boundary layer are displaced upwards where

the displacement becomes progressively less with distance from the top of the

boundary layer. As a result, the fluid near the top of the boundary layer is

accelerated most and the far field is accelerated least. In the final balance,

this then could lead to a velocity maximum at the top of the boundary layer

with a velocity gradient which vanishes locally in the 𝑦-direction (but not in

the 𝑥-direction)

Since the boundary layer theory uses a constant free-stream velocity to scale

the velocities and identify the boundary layer thickness, it is debatable as to

whether the free-stream velocity or the velocity maximum should be used in the

analysis of the results. Using the complementary way of displaying the profiles,

and comparing them to a theoretical thickness assuming a constant free-stream

velocity in fig. 2.3, but to a profile scaled against the value and location of the

maximum velocity in fig. 2.7, demonstrates that it is the velocity maximum

which should be taken for the scaling, at least at sufficiently thin boundary

layers where theory and model are indistinguishable within the boundary layer.

The close correlation between the Blasius profile and the model results breaks

down when the displacement thickness reaches about a third of the channel

depth. If we remember that the actual boundary layer thickness, 𝛿, is related

to the displacement thickness of the Blasius layer by 𝛿* = 0.344 𝛿, it becomes

clear that the boundary layer fills the entire domain, and the assumption of

the existence of a top of the boundary layer in a free stream with zero velocity

gradient in the y-direction is no longer valid. As a result, one should not expect

the real or computed flow to follow that theory.

69

2.7 Conclusions

2.6. Comparison between Fluidity and COMSOL

The displacement thickness for the three cases used in the 3D adaptive model

against distance from the leading edge of the plate is shown in figure 2.8 by the

dots. The solid lines in the figure are the results from the 2D fixed-mesh model

using exactly equivalent conditions. All features of the developing boundary

layer are reproduced by both models, including the initial slow increase up-

stream of the plate, followed by the sharp increase at the leading edge. Even

the levelling out, followed by a final peak and drop in the thickness at low

Reynolds numbers is reproduced in Case 1 of the adaptive model. As was

observed, the local solution at the leading edge is sensitive to the model res-

olution but the global solution is not noticeably affected by it. This is also

reflected here in the fact that the largest differences between the two models

are found in that region.The development of the boundary layer upstream of

the boundary is presumably a result of a pressure gradient due to the fric-

tion force at the plate and the required acceleration of the fluid outside the

boundary layer.

2.7. Conclusions

Through a cross-validation of two independent computational models and

validation against an extension of standard theory, it has been shown that

the Fluidity finite-element model package, using an hr-adaptive unstructured

mesh, provides a reliable and accurate representation of the developing lami-

nar boundary layer over a flat plate. As part of the analysis, it was shown that

two different Dirichlet boundary conditions at adjacent boundaries are likely

to lead to the failure of the model as the adaptivity would try to increase

the local resolution at the discontinuity of the imposed velocities resulting in

rapidly increasing velocity gradients. The approach to bypass this problem

was here to avoid such a case by adding an entry length with von-Neumann

conditions adjacent to the Dirichlet conditions.

While providing this analysis within a wider programme to validate this

70

2.7 Conclusions

Figure 2.8: Displacement thickness against position on the plate from the

Fluidity model (diamonds and dotted lines) and the COMSOL model (solid

lines). From top to bottom: experiment numbers 1, 2, and 3 as listed in table

2.1.

71

2.7 Conclusions

model for a general range of applications, a new algorithm to interpolate data

from an unstructured mesh was developed and tested. In this boundary layer

case, with a highly anisotropic mesh, this algorithm could reduce interpolation

errors by up to an order of magnitude compared to the methods used routinely

in the literature.

72

Chapter 3

Existing turbine models

3.1. The actuator disc

For more than a century, actuator discs have been used to analyse fluid flow

through propellers, and so turbines. Initially devised as a one-dimensional

theory based on momentum arguments by Froude, it was later expanded upon

by Glauert [34], who introduced blade element momentum theory. Then pri-

marily solved by analytic methods, it has since been used incorporated into

fully three dimensional Navier-Stokes simulations using what are known as

vorticity-velocity methods and applying them to wind turbines [69] [55]. The

general theory will be covered first in this section, followed by recent extensions

and enhancements and their applications in wind turbine modelling.

3.1.1. Basic theory

We can think of the actuator disc as an infinitely thin disc that sits perpendic-

ular to the flow, and can either model the injection of energy in the fluid, as

is the case with propellers, or the extraction of energy, as would happen with

a turbine. To this end, the model has been deployed to model axial-flow wind

turbines and their wakes, based upon previous work by Glauert.

The actuator disc extracts pressure energy rather than kinetic energy, since

the step-wise nature of the extraction of the latter requires infinite forces for

this to happen. As the fluid approaches the disc, it begins to slow down due to

the increase in pressure upstream of the the turbine. The streamtube, a circular

arrangement of streamlines around the turbine, expands before and continues

to do so downwind of the turbine. Inside this streamtube, the conservation of

73

3.1 The actuator disc

Figure 3.1: 3D streamtube in actuator disc theory (courtesy of Wind Energy

Handbook)

mass applies, so that if we assume incompressible flow we can write

𝜌𝐴0𝑢0 = 𝜌𝐴𝑑𝑢𝑑 = 𝜌𝐴𝑤𝑢𝑤 (3.1)

where

∙ 𝐴0 and 𝑢0 represent the cross-sectional area of the streamtube and speed

of the fluid in the freestream

∙ 𝐴𝑑 and 𝑢𝑑 represent the cross-sectional area of the streamtube and the

speed fo the fluid, at the actuator disc

∙ 𝐴𝑤 and 𝑢𝑤 represent the cross-sectional area of the streamtube and fluid

speed downstream, in the wake

By removing energy from the fluid, the actuator disc decreases the flow

velocity proportionally to the freestream velocity. We can say that

𝑢𝑑 = 𝑢0(1− 𝑎) (3.2)

where 𝑎 is the axial flow induction factor.

74

3.1 The actuator disc

Figure 3.2: Side view of streamview (courtesy of Wind Energy Handbook)

3.1.2. Simple momentum theory

We can write rate of change in momentum in the fluid as

𝑑𝑝

𝑑𝑡
= (𝑢0 − 𝑢𝑑)𝜌𝐴𝑑𝑢𝑑 (3.3)

This loss comes from the kinetic pressure difference between either side of

the disc, (𝑃+
𝑑 − 𝑃−𝑑), and so 𝑑𝑝

𝑑𝑡
becomes

𝑑𝑝

𝑑𝑡
= (𝑃+

𝑑 − 𝑃−𝑑)𝐴𝑑 = (𝑢0 − 𝑢𝑑)𝜌𝐴𝑑𝑢0(1− 𝑎) (3.4)

Bernoulli’s theorem gives us

1

2
𝜌𝑢2

0 + 𝑃 + 𝜌𝑔ℎ = 𝐾 (3.5)

where 𝑔 is the acceleration due to gravity, ℎ is the height, and 𝐾 is a constant.

This can be shown [16] to give

1

2
𝜌(𝑢2

0 − 𝑢2
𝑤)𝐴𝑑 = (𝑢0 − 𝑢𝑤)𝜌𝐴𝑑𝑢0(1− 𝑎) (3.6)

Hence

𝑢𝑤 = (1− 2𝑎)𝑢0 (3.7)

When energy is extracted from the air, and power generated, a backthrust

to the forward flow is generated. This is

75

3.1 The actuator disc

𝐹 = (𝑃+
𝑑 − 𝑃−𝑑)𝐴𝑑 = 2𝜌𝐴𝑑𝑢

2
0𝑎(1− 𝑎) (3.8)

Thus the extracted power is

𝑃𝑊𝑒𝑥 = 𝐹𝑢𝑑 = 2𝜌𝐴𝑑𝑢
3
0𝑎(1− 𝑎)2 (3.9)

3.1.3. Power

The amount of power available in the wind is defined as

𝑃𝑊0 =
1

2
𝜌𝐴𝑑𝑢

3
0 (3.10)

A measure of the efficiency of the turbine, the power coefficient 𝐶𝑝, is

𝐶𝑝 =
𝑃𝑊𝑒𝑥

𝑃𝑊0

= 4𝑎(1− 𝑎)2 (3.11)

There is a theoretical limit to the amount of power that can be extracted

in the actuator disc model, known as the Betz limit. This maximum of 𝐶𝑝

occurs when
𝑑𝐶𝑝

𝑑𝑎
= 0 (3.12)

Chain rule differentation gives us

𝑑𝐶𝑝

𝑑𝑎
= 4(1− 𝑎)(1− 3𝑎) = 0 (3.13)

From which we can find the maximum value 𝐶𝑝:

𝐶𝑝,𝑚𝑎𝑥 =
16

27
(3.14)

This means the theoretical maximum efficiency of an actuator disc model

is almost 60%.

76

3.1 The actuator disc

3.1.4. The thrust coefficient

Another co-efficient of use is the thrust coefficient, 𝐶𝑇 - normalised backthrust

𝐶𝑇 =
𝜌𝑢𝑑𝐴𝑑(𝑢0 − 𝑢𝑤)

1
2
𝜌𝑢2

0𝐴𝑑

= 4𝑎(1− 𝑎) (3.15)

Figure 3.3: Graph of 𝑎 versus 𝐶𝑇 and 𝐶𝑝

When 𝑎 >= 1
2

the velocity of the fluid in the wake can become zero or

negative; this needs to be corrected.

3.1.5. Blade element momentum theory and wake rotation

The above model assumes that the load on the rotor is evenly spread about

the disc. In real rotors however, this is not the case, and so this leads us

to Glauert’s extension of Froude and Rankine’s theory, which divides up the

actuator disc into rings, and so the streamtubes become annular as can be seen

in figure 3.4.

The rings are considered to be radially-independent of each other, which

allows them to be dealt with individually. A further assumption is made in

that the flow is considered to be symmetric about the rotor axis.

77

3.1 The actuator disc

Figure 3.4: Streamtube through a rotor (Courtesy of Mikkelsen)

At this point we also add wake rotation, modelling the reaction of the fluid

to the torque exerted by the rotor. We can say that immediately downstream,

the tangential (orbital) velocity of the wake is

𝑣𝑡𝑎𝑛 = 2𝜔𝐹𝐿𝑟𝑎
′ (3.16)

where 𝜔𝐹𝐿 is the angular velocity of the fluid at radius 𝑟 from the rotor

axis, and 𝑎′ is the tangential flow induction factor.

Considering a ring at 𝑟 with thickness 𝛿𝑟, we can write the torque as

𝛿𝜏 = 𝜌𝛿𝐴𝑑𝑢0(1− 𝑎)𝑣𝑡𝑎𝑛 (3.17)

where 𝛿𝐴𝑑 is the area of the annular ring. From this we can write the

extracted power as

𝛿𝑃𝑊 = 𝛿𝜏𝜔𝐹𝐿 (3.18)

From equation 3.10 we can also deduce

𝑢2
0𝑎(1− 𝑎) = 𝜔2

𝐹𝐿𝑟
2𝑎′ (3.19)

78

3.1 The actuator disc

And furthermore, that

𝑑𝐶𝑃

𝑑𝑟
= 8(1− 𝑎)𝑎′

(︃
𝜔2

𝐹𝐿

𝑢2
0𝑅

2
𝑇

)︃
𝑟3 (3.20)

By differentiating equation 3.19 with respect to 𝑎′, and setting 𝑑𝑎
𝑑𝑎′

= 0, we

can find the values of 𝑎 and 𝑎′ that give the maximum power coefficient. These

values are

𝑎 =
1

3
(3.21)

𝑎′ =
𝑎(1− 𝑎)𝑢2

0

𝑟2𝜔2
𝐹𝐿

(3.22)

By plugging these into equation 3.20 and integrating with respect to 𝑟,

between 𝑟 = 0 and 𝑟 = 𝑅𝑇 , we find that

𝐶𝑝 = 4𝑎(1− 𝑎)2 =
16

27
(3.23)

Which is an identical result to equation 3.14.

3.1.6. Aerofoils

The notion of blade element theory introduced in the previous section can

be enhanced with the concepts of lift and drag forces acting on the fluid and

aerofoil wing.

The force per unit span is defined as

𝐹 = 𝐿+𝐷 (3.24)

where 𝐿 and 𝐷 represent the lift and drag components respectively. The

axial and orbital components can be expressed as

𝐹𝑎𝑥𝑖𝑎𝑙 = 𝐿𝑐𝑜𝑠𝜑+𝐷𝑠𝑖𝑛𝜑 (3.25)

and

𝐹𝑜𝑟𝑏𝑖𝑡𝑎𝑙 = 𝐿𝑠𝑖𝑛𝜑−𝐷𝑐𝑜𝑠𝜑 (3.26)

79

3.2 Further extensions to actuator theory

Figure 3.5: Cross-section of aerofoil (courtesy of Mikkelsen)

𝐿 and 𝐷 can be obtained with the help of tabulated aerofoil data. 𝐹𝑎𝑥𝑖𝑎𝑙

and 𝐹𝑜𝑟𝑏𝑖𝑡𝑎𝑙 can be incorporated into the actuator framework using iterative

methods for solution according to [55]. These need not be gone into in more

detail here, however the point is made: the aerodynamic effect of turbine blades

and the surface incidence to the flow are not effects that can be ignored.

Whilst the thesis model does not explicitly mention incidence angle, it does

take into account the effect of the blade orientation, surface distribution and

aerodynamic properties (such as lift) on the turbine’s performance and the

flow; and that properties such as blade angle can be dynamic. More on this is

described in chapter 4.

3.2. Further extensions to actuator theory

3.2.1. The Ψ− 𝜔 model

This model uses the Navier-Stokes equations for numerically solving the actua-

tor disc induced flow. It has the benefit of introducing viscosity; actuator theo-

ries discussed previously assume an inviscid fluid. Also, being time-dependent

it is able to solve unsteady flow, typical of heavily-loaded turbines. Developed

by Sørensen and colleagues [69] [68], it also forms the basis of Mikkelsen’s work

[55].

80

3.2 Further extensions to actuator theory

Rather than solving in cartesian co-ordinates using velocity and pressure

as primitive variables, it switches to vorticity-velocity, or 𝜔 − 𝑢 variables in

cylindrical co-ordinates (𝑟, 𝜃, 𝑧) (note: for this section, 𝜔 denotes vorticity not

angular velocity) . The curl operator (∇×) is applied to the Navier-Stokes

equations to give

𝜕𝜔

𝜕𝑡
+∇× (𝜔 × 𝑢) = 𝜈∇× (∇× 𝜔) +∇× 𝑓 (3.27)

∇× 𝑢 = 𝜔 (3.28)

∇.𝑢 = 0 (3.29)

where 𝜈 is the kinematic viscosity, and 𝑓 represents body forces applied to

the fluid.

Figure 3.6: A finite segment in a 𝜔 − 𝑢 model (courtesy of Sørensen 1998)

This is commonly deployed using a finite-difference scheme, divided into

regular (𝛿𝜃, 𝛿𝑟, 𝛿𝑧) segments of ‘cheese cake’ slices, as seen in figure 3.6. Time

integration is by both Adams-Bashforth for convective and Crank-Nicolson for

diffusive terms.

According to Mikkelsen, results compare reasonably with one-dimensional

theory up to high levels of thrust, but for 𝐶𝑇 >= 1 results deviate from this

81

3.4 Wake modelling for wind farms

towards agreeing with experiments using a Nordtank stall-regulated turbine.

This is surprising, given that the effects of turbulence viscosity are not being

explicitly modelled. Moreover, Mikkelsen does not detail the downstream wake

for distances greater than ≈ 3 turbine diameters, so it is difficult to see whether

the model will hold to the rule-of-thumb of ≈ 20 diameters wake recovery, or

that the velocity deficit profile that matches experiment.

Lastly, cylindrical co-ordinates reduce the feasibility of deploying this model

in anything other than a wind-tunnel style environment; at large values of 𝑟

resolution would become an issue as the finite segments grow too large. Clearly,

a finite-element model capable of irregular meshes and based on cartesian co-

ordinates, might present some benefits when attempting to simulate a wind

turbine in more realistic environments involving greater scales (urban build-

ings, orography).

3.3. Full 3D model simulation

One impressive paper both demonstrates the complexity of modelling a wind

turbine in its entirety and its current impractibility for large-scale simulation.

Wußow et al [75] demonstrate a finite-volume model running under commer-

cial CFD software that comprises of a moving mechanical model of the rotor,

replete with nacelle (hub) and tower.

This paper was written in 2007 with, at the time of writing, recent com-

puting technology to hand; despite this, the domain extends no further than

1 turbine rotor diameter upwind, and 3 downwind for a 10 minute simulation.

Thus, for domains that may extend over 1km downstream (> 20 diameters

for large HAWTs) this in-depth level of modelling may not be appropriate for

farm simulation – 4 million cells! – a cruder model is needed, which manages

to capture both the response of the turbine to wind conditions, and of the wake

to the turbine’s performance. Nonetheless, it is a useful source for turbulence

characteristics, particularly in its use of a von-Karman model for turbulence

at the inflow boundary.

82

3.4 Wake modelling for wind farms

Figure 3.7: Velocity magnitude plot for 𝑢𝑖𝑛 = 10𝑚𝑠−1 (courtesy of Wusow)

3.4. Wake modelling for wind farms

Attempts at simulating the full length (near to far) of wind turbine wakes have

an interesting history, perhaps because of the necessary restrictions placed

upon them by the limited computational power of the time, especially in wind

farm configurations with many turbines. In their review, Crespo et al [20],

detail both single and multiple wake models, which tend to employ a semi-

emperical approach, using experimental data and theory to formulate analyt-

ical solutions for wake profiles.

Emperical laws for single wakes have been shown to agree well to measure-

ments [6], according to Crespo. For multiple wakes, the simplest assumption

is that of linear superposition of velocity deficits from different turbines as

first suggested by Lissaman [47]; this led to artifically long wakes. Smith and

Taylor [67] discovered that for two machines in a row, the wake velocity of the

downstream turbine recovered more quickly. Crespo suggests that higher lev-

els of turbulence downstream, generated by the upstream turbine, contribute

to greater momentum diffusion in the wake of the second turbine. Fig. 3.8

shows how a variety of models fare against experiment, clearly demonstrating

the over-long wakes of models using linear wake superposition.

83

3.4 Wake modelling for wind farms

Figure 3.8: Velocity deficits behind downstream turbines: a comparison be-

tween various wake models and experiment (see Crespo et al [20] for details)

In more recent developments, Barthelmie et al [11] have been making the

first steps toward full computational fluid dynamic simulations of wind farms

with simple land features. This thesis will present a turbine model which is

intended to be used in such a scenario.

84

Chapter 4

Turbine model design

4.1. Rationale

The thesis turbine model represents a departure from current schemes, as it

neither deals with rigid bodies moving through fluid, nor boundary conditions.

Rather, it applies body forces to the fluid over a cylindrical volume within the

fluid, to affect power extraction, wake rotation, and turbulence.

Figure 4.1: View of the turbine model volume

There are several reasons for this approach:

1. Generality. We make few assumptions about the geometry of the

blades, other than that they rotate around a horizontal axis in a well-

defined cylindrical volume.

2. Complexity. Ad-hoc boundary conditions can be difficult to imple-

ment, particularly in noncommercial code

85

4.2 Physical properties

3. Computational cost. In many models finite difference, volume or ele-

ment boundary conditions require extra computing cycles as opposed to

non-boundary grid nodes.

4. Granularity. By rejecting the notion of boundaries on a disc or turbine

blade, we can control what happens to the fluid as it passes through

volume occupied by the turbine and is acted upon by it, without losing

generality. As there are no boundaries, this allows the resolution of the

model to be entirely arbitrary.

4.2. Physical properties

Assume that we have a single turbine that is modelled as a shallow cylindrical

volume, in which the fluid velocity is affected. The cylinder’s rotational axis

of symmetry is always perpendicular to the z-axis, and the turbine has the

following global properties:

∙ position 𝑥𝑇

∙ orientation angle 𝜑

∙ turbine radius 𝑅𝑇

∙ hub radius 𝑅𝐻

∙ radius at start of tip section 𝑅𝑡𝑖𝑝

∙ tip width fraction 𝑤

∙ length 𝐿

∙ flow factor 𝑓

∙ tip speed ratio 𝜆

∙ power extraction efficiency parameter 𝑄

∙ net blade solidity 𝐵 and associated local solidity 𝛽

86

4.2 Physical properties

∙ hub local solidity 𝛽𝐻

∙ effective net blade solidity 𝐵′ and effective local solidity 𝛽′

∙ blade pitch parameter 𝛼

∙ angular velocity of the fluid at the turbine outlet 𝜔𝐹𝐿

∙ angular velocity of the fluid with no power extraction (free-wheeling)

𝜔𝑁𝑃

∙ angular velocity of the (virtual) turbine blades 𝜔𝑇

∙ power extracted by the turbine 𝑃𝑊𝑒𝑥

∙ power coefficient 𝑐𝑝

∙ 𝑢𝑐𝑢𝑡𝑖𝑛 the cut-in flow speed of the turbine

∙ 𝑢𝑐𝑢𝑡𝑜𝑢𝑡 the cut-out flow speed of the turbine

∙ Length of the tip section causing turbulence 𝐿𝑡𝑖𝑝

∙ turbulence intensity at tip section of blade 𝑇𝑖

(a) Dimensions of the

model volume

(b) Orientation of the model

Figure 4.2: Specification of the model in three dimensions

The following denote values occuring at optimum performance of the tur-

bine (hence the subscript 𝑜𝑝𝑡):

87

4.3 Method overview

∙ turbine angular velocity 𝜔𝑇,𝑜𝑝𝑡

∙ effective solidity 𝐵′
𝑜𝑝𝑡

∙ free-stream fluid speed 𝑢0,𝑜𝑝𝑡

∙ power coefficient 𝑐𝑝,𝑜𝑝𝑡

∙ power coefficient at cut-out fluid speed 𝑐𝑝,𝑐𝑢𝑡𝑜𝑢𝑡

∙ turbulence intensity at optimum efficiency - 𝑇𝑖𝑜𝑝𝑡

Also assume that the turbine rests in an incompressible and viscous fluid

that has the following attributes:

∙ a fluid velocity field 𝑢(𝑥, 𝑡)

∙ density 𝜌

∙ molecular dynamic viscosity 𝜇

4.3. Method overview

The turbine model technique can essentially be thought of as a comparison

between two turbines. One is free-wheeling, only converting linear momentum

to angular momentum in the downstream wake; the other does the same, but

also extracting power from the fluid flow.

(a) Turbine A, with no power extraction

(freewheeling)

(b) Turbine B, a power-extracting turbine

Figure 4.3: Comparison between two turbine cases used in the model

88

4.3 Method overview

Initially, we will only consider axial flow turbines with the intake surface

perpendicular to the flow, and of constant solidity. The freestream velocity

flows in a positive direction parallel to the x-axis, and is of magnitude 𝑢0.

The process is essentially as follows:

1. 𝜔𝑁𝑃 is calculated from the mean speed 𝑢̄𝑖𝑛 of the fluid entering turbine

A (this is likely to be less than 𝑢0),

2. The resulting orbital components of the acceleration are calculated,

3. Based upon these, the backthrust in the fluid is found,

4. 𝜔𝐹𝐿 is determined as a fraction of 𝜔𝑁𝑃 ,

5. Axial and orbital forces are updated using 𝜔𝐹𝐿,

6. The extracted power 𝑃𝑊𝑒𝑥 is determined, and

7. The body forces are applied to the fluid.

4.3.1. Free-wheeling angular velocity

First, we define 𝜔𝑁𝑃 , the angular velocity of the fluid with a free-wheeling

turbine. To do this, first we assume that all of the forward kinetic energy of

the fluid is converted into rotational kinetic energy, ie. that

𝐾𝐸𝑖𝑛 = 𝐾𝐸𝑟𝑜𝑡𝑎𝑡𝑒 (4.1)

or

1

2
𝑀𝑇 𝑢̄

2
𝑖𝑛 =

1

2
𝐼𝜔2

𝑁𝑃 (4.2)

Where 𝑀𝑇 is the mass of fluid in the turbine. We can write 𝐼, the moment

of inertia for a cylinder, as

𝐼 =
1

2
𝑀𝑇𝑅

2
𝑇 (4.3)

Therefore

89

4.3 Method overview

𝑀𝑇 𝑢̄
2
𝑖𝑛 =

1

2
𝑀𝑇𝑅

2
𝑇𝜔

2
𝑁𝑃

𝑢̄2
𝑖𝑛 =

1

2
𝑅2

𝑇𝜔
2
𝑁𝑃

𝜔𝑁𝑃 =
√

2
(︂
𝑢̄𝑖𝑛

𝑅𝑇

)︂
(4.4)

Now we assume that only a fraction of the linear momentum is converted

to angular momentum, and that this fraction depends upon two things: the

blade pitch parameter 𝛼 and the turbine net solidity 𝐵, a measure of how solid

the turbine appears to the oncoming flow. As this will both be linear in 𝑢, the

above becomes

𝜔𝑁𝑃 =
√

2𝛼𝐵
(︂
𝑢̄𝑖𝑛

𝑅𝑇

)︂
(4.5)

Then we add the flow factor 𝑓 , which parameterises for aerodynamic/hydrodynamic

effects in real turbines, such as lift. This can be thought of as analogous to

the tangential flow induction factor introduced by Sharpe [66].

𝜔𝑁𝑃 =
√

2𝑓𝛼𝐵
(︂
𝑢̄𝑖𝑛

𝑅𝑇

)︂
(4.6)

However, due to the lack of boundary conditions in the model, calculation

of 𝑢̄𝑖𝑛 can be problematic. So, assuming that the cylinder is thin enough, a

valid approximation would be that mean speed of the flow inside the cylinder

is close to the mean speed entering it - in other words, 𝑢̄𝑖𝑛 ≈ 𝑢̄. Thus the

above equation becomes

𝜔𝑁𝑃 ≈
√

2𝑓𝛼𝐵
(︂
𝑢̄

𝑅𝑇

)︂
(4.7)

4.3.2. Calculating the power output

One option for calculating the power extracted by the turbine is through

Bernoulli’s equation. However, this is not a wise choice for estimating power,

for two reasons:

90

4.3 Method overview

1. Bernoulli’s equation deals only with laminar flow. Any effective wind

or marine turbine model must deal with turbulence, and so the loss to

turbulent kinetic energy must be divorced from that lost to the turbine.

2. By its very nature, Bernoulli’s equation can only examine the net energy

extraction from the flow. To examine the effects of turbines on the

performance of similar devices downstream, greater granularity is needed.

Instead, what we do is introduce a second angular velocity, 𝜔𝐹𝐿, which is

the angular velocity of the fluid when the same turbine extracts power from

the flow. This is defined as

𝜔𝐹𝐿 = (1−𝑄)𝜔𝑁𝑃 (4.8)

where 𝑄 represents the fractional loss of angular momentum due to power

extraction. We limit 𝑄 to 0 ≤ 𝑄 ≤ 1.

If we first write the difference in rotational kinetic energy between the

free-wheeling and power extracting turbine, we get:

Δ𝐸 =
1

2
𝐼𝜔2

𝑁𝑃 −
1

2
𝐼𝜔2

𝐹𝐿

=
1

2
𝐼(𝜔2

𝑁𝑃 − 𝜔2
𝐹𝐿) (4.9)

The power extracted can be written as

𝑃𝑊𝑒𝑥 =
𝑑𝐸

𝑑𝑡

≈ Δ𝐸

Δ𝑡𝑇

=
1

2
𝐼(𝜔2

𝑁𝑃 − 𝜔2
𝐹𝐿)

1

Δ𝑡𝑇
(4.10)

Where Δ𝑡𝑇 is the time taken for the fluid to travel through the turbine, ie.

the time over which the energy extraction takes place. Hence

Δ𝑡𝑇 =
𝐿

𝑢̄
(4.11)

91

4.3 Method overview

where 𝑢̄ is the mean speed of the fluid through the turbine. Plugging this

in, we get

𝑃𝑊𝑒𝑥 =
1

2
𝐼(𝜔2

𝑁𝑃 − 𝜔2
𝐹𝐿)

𝑢̄

𝐿

=
1

4
𝑀𝑇𝑅

2
𝑇 (𝜔2

𝑁𝑃 − 𝜔2
𝐹𝐿)

𝑢̄

𝐿

=
1

4
𝜌𝜋𝑅4

𝑇𝐿(𝜔2
𝑁𝑃 − 𝜔2

𝐹𝐿)
𝑢̄

𝐿
(4.12)

Therefore

𝑃𝑊𝑒𝑥 =
1

4
𝜌𝜋𝑅4

𝑇 (𝜔2
𝑁𝑃 − 𝜔2

𝐹𝐿)𝑢̄ (4.13)

4.3.3. Turbine angular velocity

The turbine angular velocity 𝜔𝑇 is distinct from the angular velocity of the

fluid 𝜔𝐹𝐿. 𝜔𝑇 ties the behaviour of the model to real turbines. First we need

to find 𝜔𝑇,𝑜𝑝𝑡, which we can do using 𝑢0,𝑜𝑝𝑡, found from turbine performance

charts such as that in figure 4.4.

Figure 4.4: Typical performance graph from the Danish wind industry associ-

ation website

92

4.3 Method overview

The tip-speed ratio 𝜆 is the ratio of the orbital speed of the tip of the

turbine blades to 𝑢0,opt . If we assume 𝜆 to be constant, we can write

𝜔𝑇,𝑜𝑝𝑡𝑅𝑇 = 𝜆𝑢0,𝑜𝑝𝑡

𝜔𝑇,𝑜𝑝𝑡 = 𝜆
(︂
𝑢0,𝑜𝑝𝑡

𝑅𝑇

)︂
(4.14)

Now we turn to the power output, which we use to couple 𝜔𝑇 to the model.

The optimum power extracted is

𝑃𝑊𝑒𝑥,𝑜𝑝𝑡 = 𝑐𝑝,𝑜𝑝𝑡𝑃𝑊𝑓𝑟𝑒𝑒𝑠𝑡𝑟𝑒𝑎𝑚

= 𝑐𝑝,𝑜𝑝𝑡
1

2
𝜌𝜋𝑅2

𝑇𝑢
3
0,𝑜𝑝𝑡 (4.15)

If we then assume that the torque on the turbine shaft due to electrome-

chanical friction and power extraction is linear with 𝜔𝑇

𝜏 = 𝐾𝜏𝜔𝑇 (4.16)

where 𝐾𝜏 is a constant, then

𝑃𝑊𝑒𝑥 = 𝜏𝜔𝑇

= 𝐾𝜏𝜔
2
𝑇 (4.17)

The constant 𝐾𝜏 can be defined from optimum values

𝐾𝜏 =

(︃
𝑃𝑊𝑒𝑥,𝑜𝑝𝑡

𝜔2
𝑇,𝑜𝑝𝑡

)︃
(4.18)

And so

𝑃𝑊𝑒𝑥 =

(︃
𝑃𝑊𝑒𝑥,𝑜𝑝𝑡

𝜔2
𝑇,𝑜𝑝𝑡

)︃
𝜔2

𝑇 (4.19)

Therefore the angular velocity of the turbine is

𝜔𝑇 =

(︃
𝑃𝑊𝑒𝑥

𝑃𝑊𝑒𝑥,𝑜𝑝𝑡

)︃ 1
2

𝜔𝑇,𝑜𝑝𝑡 (4.20)

93

4.3 Method overview

4.3.4. Extending solidity

As mentioned in section 4.3.1, rather than just being a measure of the cross-

sectional area of the turbine, 𝐵 also quantifies the effect this cross-section has

on the flow. In this subsection, we build upon this idea.

Non-uniform solidity

Previously it was assumed that the solidity - the blade density - was spatially

invariant. Looking at a real turbine we can see that this is patently untrue.

Figure 4.5: Cross-section of typical wind turbine

We need to construct a more realistic representation; this brings in the

concept of the local solidity, 𝛽, which will capture the radial tapering of the

blades. This is defined as a function distance from the axis of rotation, ie.

𝛽 = 𝛽(𝑟) (4.21)

where 𝑟 =
√︁

(𝑦2 + 𝑧2).

94

4.3 Method overview

If we assume that the turbine will have 𝑁 blades each with a chord length

𝑐(𝑟). This gives us a local solidity at radius 𝑟 of

𝛽(𝑟) =
Nc(r)

2𝜋𝑟
(4.22)

As can be seen from the above equation, the local solidity becomes infinite

at 𝑟 = 0. In reality, there is a turbine hub from which the blades extend; and

this hub has a radius of 𝑅𝐻 . The hub is considered to have a constant local

solidity (or solidity density if you prefer), called 𝛽𝐻 . From this we can write

𝛽(𝑟) =

⎧⎪⎨⎪⎩
𝑁𝑐(𝑟)
2𝜋𝑟

if 𝑅𝐻 < 𝑟 ≤ 𝑅𝑇

𝛽𝐻 if 𝑟 ≤ 𝑅𝐻

(4.23)

Figure 4.6: Simplified turbine blade model for N=3

For 𝛽(𝑟) to become useful, we need to find out what 𝑁𝑐(𝑟) is, since there

is no direct notion of real blades within the model itself. To find this, we must

use an equation for the net solidity:

𝐵 =
1

𝜋𝑅2
𝑇

∫︁ 𝑅𝑇

0
2𝜋𝑟𝛽(𝑟)𝑑𝑟

=
1

𝜋𝑅2
𝑇

∫︁ 𝑅𝑇

𝑅𝐻

2𝜋𝑟𝛽(𝑟)𝑑𝑟 + 𝛽𝐻

(︃
𝜋𝑅2

𝐻

𝜋𝑅2
𝑇

)︃

95

4.3 Method overview

=
1

𝜋𝑅2
𝑇

∫︁ 𝑅𝑇

𝑅𝐻

𝑁𝑐(𝑟)𝑑𝑟 + 𝛽𝐻

(︃
𝜋𝑅2

𝐻

𝜋𝑅2
𝑇

)︃
(4.24)

If we assume that 𝑐(𝑟) is a linear function of 𝑟, then we can write:

𝐵 =
1

𝜋𝑅2
𝑇

[︁
𝑁𝑐(𝑅𝑇 −𝑅𝐻) + 𝛽𝐻(𝜋𝑅2

𝐻)
]︁

(4.25)

where 𝑁𝑐(𝑅𝑇 − 𝑅𝐻) represents the cross-sectional area of the blades, and

𝛽𝐻(𝜋𝑅2
𝐻) the hub. Since every term aside from 𝑁𝑐 is defined, we can calculate

its value as

𝑁𝑐 = (𝐵 −𝐵𝐻)

(︃
𝜋𝑅2

𝑇

𝑅𝑇 −𝑅𝐻

)︃
(4.26)

where the hub solidity is 𝐵𝐻 = 𝛽𝐻

(︁
𝑅𝐻

𝑅𝑇

)︁2
.

Figure 4.7: 𝑐(𝑟) as a linear function of 𝑟

We still do not have𝑁𝑐(𝑟), so if we write𝑁𝑐𝐻 for𝑁𝑐(𝑟 = 𝑅𝐻) and similarly

𝑁𝑐𝑇 for the tip, we can write

𝑁𝑐 =
1

2
(𝑁𝑐𝐻 +𝑁𝑐𝑇) (4.27)

Using the tip width fraction that states that 𝑐𝑇 = 𝑤𝑐𝐻 , we now have

𝑁𝑐 =
1

2
𝑁𝑐𝐻(1 + 𝑤) (4.28)

Which is rearranged to give

𝑁𝑐𝐻 =
2𝑁𝑐

1 + 𝑤
(4.29)

96

4.3 Method overview

As previously stated, 𝑐(𝑟) is assumed to be a linear function of 𝑟, so

𝑁𝑐(𝑟) = 𝑎𝑟 + 𝑏 (4.30)

Where 𝑎 and 𝑏 are constants.

These can be found from known values of 𝑁𝑐:

𝑁𝑐(𝑅𝐻) = 𝑎𝑅𝐻 + 𝑏 = 𝑁𝑐𝐻 (4.31)

And if 𝑅𝑇 >> 𝑅𝐻 :

𝑁𝑐(
1

2
𝑅𝑇) = 𝑁𝑐 = 𝑎

1

2
𝑅𝑇 + 𝑏 (4.32)

This gives us

𝑎 =
(𝑁𝑐−𝑁𝑐𝐻)

(𝑅𝑇

2
−𝑅𝐻)

(4.33)

and

𝑏 = 𝑁𝑐𝑇 − 𝑎𝑅𝐻 (4.34)

Hence 𝑁𝑐(𝑟) is defined, and so 𝛽(𝑟).

Consequences for equations Now that solidity is no longer spatially uni-

form, this means the turbine is no longer spatially uniform in its effect on the

fluid: rather than deal with 𝐵 and 𝑢̄, we must treat these as spatially-varying

properties, 𝛽(𝑟(𝑥)) and 𝑢(𝑥). 𝜔𝑁𝑃 in equation 4.7 must therefore be rewritten.

For a small segment of fluid occupying volume 𝛿𝑉 at radius 𝑟 from the axis

of the turbine, the moment of inertia is

𝛿𝐼 = 𝛿𝑀𝑟2 (4.35)

where 𝛿𝑀 = 𝜌𝛿𝑉 , the mass of the segment.

Revisiting the equations that gave us the definition of 𝜔𝑁𝑃 (equation 4.7),

we have:

97

4.3 Method overview

1

2
𝛿𝑀𝑢(𝑥)2 =

1

2
𝛿𝐼𝜔2

𝑁𝑃 (𝑟)

=
1

2
𝛿𝑀𝑟2𝜔2

𝑁𝑃 (𝑟) (4.36)

which reduces to, assuming positive roots only:

𝑢(𝑥) = 𝑟𝜔𝑁𝑃 (𝑟) (4.37)

Adding in the effects of 𝛼, 𝛽(𝑟) and 𝑓 , we can rearrange this to give

𝜔𝑁𝑃 (𝑟) = 𝑓𝛼𝛽(𝑟)

(︃
𝑢(𝑥)

𝑟

)︃
(4.38)

Which is the resultant angular velocity on our small piece of fluid in the

absence of any power extraction. The actual angular velocity, 𝜔𝐹𝐿, is

𝜔𝐹𝐿(𝑥) = (1−𝑄)𝜔𝑁𝑃 (𝑥) (4.39)

This means that our power calculation now becomes

𝑃𝑊 𝑒𝑥 =
1

4
𝜌𝜋𝑅4

𝑇 (𝜔2
𝑁𝑃 − 𝜔2

𝐹𝐿)𝑢̄ (4.40)

Where

𝜔2
𝑁𝑃 =

1

𝑉𝑇

∫︁ 𝑉𝑇

0
𝜔2

𝑁𝑃 (𝑥)𝑑𝑉

and

𝜔2
𝐹𝐿 = (1−𝑄)2𝜔2

𝑁𝑃

in the limit of 𝛿𝑉 → 0. 𝑉𝑇 is the volume of the turbine model cylinder.

But is there any further we can go in ‘drilling down’ our definition for

𝑃𝑊𝑒𝑥? Well, if we rewrite the power equation as

𝑃𝑊 ex =
1

4
𝜌𝜋𝑅4

𝑇 (Δ𝜔2)𝑢̄ (4.41)

where Δ𝜔2 = 𝜔2
𝑁𝑃 − 𝜔2

FL.

Re-expressing this in terms of 𝜔2
𝐹𝐿 we have

98

4.3 Method overview

Δ𝜔2 =

(︃
1

(1−𝑄)2
− 1

)︃
𝜔2

𝐹𝐿 (4.42)

𝜔2
𝑁𝑃 must be solved by integration, and so

𝜔2
𝑁𝑃 =

1

𝑉𝑇

∫︁ 𝑉𝑇

0
𝜔2

𝑁𝑃 (𝑥)𝑑𝑉

=
1

𝑉𝑇

∫︁ 𝑉𝑇

0

(︂
𝑓
𝛼

𝑅𝑇

𝛽(𝑟)𝑢(𝑥)
)︂2

dV

=

(︃
𝑓 2𝛼2

𝑉𝑇

)︃∫︁ 𝑉𝑇

0
𝛽2(𝑟)

𝑢2(𝑥)

𝑟2
𝑑𝑉 (4.43)

Here lies the sticking point: analytically, we cannot refine our our definition

of 𝜔2
𝑁𝑃 any further and so cannot calculate the power extracted, since we do

not know 𝑢2(𝑥). In practice – that is to say, in simulation – we numerically

integrate 𝜔2
𝑁𝑃 (𝑥) and so calculate 𝜔2

𝑁𝑃 .

From this, we can define 𝜔2
𝐹𝐿 and hence Δ𝜔2, which then allows us to find

𝑃𝑊𝑒𝑥. Precisely how this is done will be detailed in the numerical modelling

section.

Effective solidity

There is a problem with our current formulation of power extraction: it can

never extract enough power. 𝐵 for real turbines is of the order of a few percent.

In practice, setting 𝐵 to realistic values gives nothing near the theoretical Betz

limit of 59% power extraction nor the rated efficiencies of real turbines of 10-

40%. Thus our notion of what solidity actually is must be extended, through

what it does. By saying that solidity is a measure of the effect of the turbine

on the flow, rather than just a measure of the cross-sectional area of it, we

come to the concept of effective solidity.

We shall denote the effective net solidity 𝐵′, and the local effective solidity

𝛽′ – these we will substitute for 𝐵 and 𝛽 in our power extraction and angular

momentum equations.

Net effective solidity As the effective solidity scaling factor must be both

non-dimensional and global, it can by extension be applied to the net solidity.

99

4.3 Method overview

Since the hub and nacelle generate no lift and the blades clearly do, we write

the net effective solidity as

𝐵′(𝜔𝑇) = [1 + 𝜅𝑓𝐵(𝜔𝑇)]𝐵𝑏𝑙 +𝐵𝐻 (4.44)

Where 𝐵𝑏𝑙 is the solidity of the blades, defined as 𝐵𝑏𝑙 = 𝐵 − 𝐵𝐻 , 𝜅 is a

scaling constant, and 𝑓𝐵(𝜔𝑇) is a function of 𝜔𝑇 .

𝑓𝐵 represents the non-linear interaction between the flow and the blades due

to their rotation, which gives rise to effective solidity: it is a parameterisation

of such behaviour. Originally it was a simple linear function with 𝑓𝐵 = 𝜔′

(where 𝜔′ = 𝜔𝑇

𝜔𝑇,𝑜𝑝𝑡
), but this was found to produce insufficient power output at

𝑢0 < 𝑢0,𝑜𝑝𝑡 when compared with performance graphs for known wind turbines.

Higher effective solidity at lower fluid speeds would allievate this problem, and

so a non-linear function was needed.

The criteria for candidate functions were:

1. Symmetry: 𝑓𝐵(𝜔𝑇) = 𝑓𝐵(−𝜔𝑇)

2. 𝑓𝐵(𝜔𝑇 = 0) = 0

3. 𝑓𝐵(𝜔𝑇,𝑜𝑝𝑡) = 1

4. A non-linear bulge at lower 𝜔𝑇 ; ie. above the line 𝑓𝐵 = 𝜔𝑇 at 𝜔𝑇 <
1
2

5. Near-linear behaviour for 𝜔𝑇 > 𝜔𝑇,𝑜𝑝𝑡

The Vestas V52 turbine was chosen, and a variety of functions evaluated

for effectiveness (see fig. 4.8) by comparision with the turbine’s known perfor-

mance figures. Eventually the following equation was decided upon:

𝑓𝐵(𝜔𝑇) = |𝜔′|1/3 (4.45)

With 𝑓𝐵 determined, now we can define 𝐵′ unambiguously. If we take the

effective solidity when the turbine blades rotate at 𝜔𝑇,𝑜𝑝𝑡, we have

𝐵′
𝑜𝑝𝑡 = 𝐵′(𝜔𝑇,𝑜𝑝𝑡) = [1 + 𝜅𝑓𝐵(𝜔𝑇,𝑜𝑝𝑡)]𝐵𝑏𝑙 +𝐵𝐻 (4.46)

100

4.3 Method overview

Figure 4.8: A selection of candidates for 𝑓𝐵. The dashed blue line is the linear

case, underperforming at 𝑢0 < 𝑢0,𝑜𝑝𝑡, as did the square root function albeit to

a lesser extent. The solid red line typifies the ideal function, the cubic root.

Since we know 𝐵′
𝑜𝑝𝑡 and 𝜔𝑇,𝑜𝑝𝑡 already, this can be rearranged to give

𝜅 =
1

𝑓𝐵(𝜔𝑇,𝑜𝑝𝑡)

(︃
𝐵′

𝑜𝑝𝑡 −𝐵𝐻

𝐵𝑏𝑙

− 1

)︃
(4.47)

Thus 𝜅 can be determined.

Local effective solidity In the blade section, the effective solidity in a small

volume segment varies as the local orbital speed of the blades through the fluid,

instead of simply just the turbine angular velocity 𝜔𝑇 . Thus

𝛽′(𝑟) =

⎧⎪⎨⎪⎩ [1 + 𝑘𝑟𝑓𝐵(𝜔𝑇)]𝛽(𝑟) if 𝑅𝐻 < 𝑟 ≤ 𝑅𝑇

𝛽𝐻 if 𝑟 ≤ 𝑅𝐻

(4.48)

where 𝑘 is a scaling constant of units 1
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

. This can be determined from

the net effective solidity. Recalling equation 4.24, we can write

101

4.3 Method overview

𝐵′ =
1

𝜋𝑅2
𝑇

∫︁ 𝑅𝑇

0
2𝜋𝑟𝛽′(𝑟)𝑑𝑟

=
1

𝜋𝑅2
𝑇

∫︁ 𝑅𝑇

𝑅𝐻

[1 + 𝑘𝑟𝑓𝐵(𝜔𝑇)]2𝜋𝑟𝛽(𝑟)𝑑𝑟 +𝐵𝐻

= 𝐵 +
1

𝜋𝑅2
𝑇

∫︁ 𝑅𝑇

𝑅𝐻

𝑘𝑓𝐵(𝜔𝑇)2𝜋𝑟2𝛽(𝑟)𝑑𝑟

= 𝐵 +
𝑘𝑓𝐵(𝜔𝑇)

𝜋𝑅2
𝑇

∫︁ 𝑅𝑇

𝑅𝐻

𝑟𝑁𝑐(𝑟)𝑑𝑟 (4.49)

As 𝑘 is constant, we can determine this through optimum values, which

are known already. Thus

𝐵′
𝑜𝑝𝑡 = 𝐵 +

𝑘𝑓𝐵(𝜔𝑇,𝑜𝑝𝑡)

𝜋𝑅2
𝑇

∫︁ 𝑅𝑇

𝑅𝐻

𝑟𝑁𝑐(𝑟)𝑑𝑟 (4.50)

Expanding out 𝑁𝑐(𝑟) from equation 4.30, we have

𝐵′
𝑜𝑝𝑡 = 𝐵 +

𝑘𝑓𝐵(𝜔𝑇,𝑜𝑝𝑡)

𝜋𝑅2
𝑇

∫︁ 𝑅𝑇

𝑅𝐻

𝑟(𝑎𝑟 + 𝑏)𝑑𝑟

= 𝐵 +
𝑘𝑓𝐵(𝜔𝑇,𝑜𝑝𝑡)

𝜋𝑅2
𝑇

∫︁ 𝑅𝑇

𝑅𝐻

(𝑎𝑟2 + 𝑏𝑟)𝑑𝑟

= 𝐵 +
𝑘𝑓𝐵(𝜔𝑇,𝑜𝑝𝑡)

𝜋𝑅2
𝑇

[︂
1

3
𝑎𝑟3 +

1

2
𝑏𝑟2
]︂𝑅𝑇

𝑅𝐻

= 𝐵 +
𝑘𝑓𝐵(𝜔𝑇,𝑜𝑝𝑡)

𝜋𝑅2
𝑇

[︂
1

3
𝑎(𝑅3

𝑇 −𝑅3
𝐻)− 1

2
𝑏(𝑅2

𝑇 −𝑅2
𝐻)
]︂

= 𝐵 + 𝑘𝑆 (4.51)

Where 𝑆 is a constant which we can find, since 𝑎 and 𝑏 have already been

determined from equations 4.33 and 4.34 respectively.

This gives us

𝑘 =
(𝐵′

𝑜𝑝𝑡 −𝐵)

𝑆
(4.52)

This is the scaling constant for the local effective solidity.

4.3.5. Limiting turbine performance

With increasing flow strength, the angular velocity of a turbine, 𝜔𝑇 will nat-

urally increase also. However, at higher speeds real turbines are subjected to

102

4.3 Method overview

forces which cause excessive wear and tear; as a result, most try to limit 𝜔𝑇

by altering the blade pitch or using designed-in blade stall.

The blade parameter 𝛼 can be thought of as mimicking the effect of pitch

or stall on the turbine; essentially, it limits the effect the flow can have on the

turbine.

Figure 4.9: Possible physical interpretations of the blade factor. We are inter-

ested in those encircled.

We say that at 𝛼 = 1 the turbine is at its most efficient, and at 𝛼 = 0 it is

completely inefficient. Thus

0 ≤ 𝛼 ≤ 1 (4.53)

Calculating 𝛼 for ‘hard’ limiting turbines

Many modern horizontal axial wind turbines actively monitor their perfor-

mance, and adjust blade pitch accordingly to maintain a constant power out-

put at higher freestream velocities. Axial flow marine turbines also do this,

rather than have cavitation bubbles forming on the blades during stall, which

can lead to excessive wear on blades’ surfaces [30]. Since the power output

does not increase beyond 𝑢0,𝑜𝑝𝑡, the angular velocity of the turbine, 𝜔𝑇 does

not increase beyond 𝜔𝑇,𝑜𝑝𝑡 and so

103

4.3 Method overview

𝜔𝑇,𝑚𝑎𝑥 = 𝜔𝑇,𝑜𝑝𝑡 (4.54)

This is not the case for soft-limited turbines, which will be returned to

later.

Figure 4.10: Wind speed versus hard-limited power outpout of a NEG Micon

1500 turbine (Courtesy of Danish Wind Industry Association website)

Also, we state the following conditions must hold for 𝛼:

𝛼(𝜔𝑇 ≤ 𝜔𝑇,𝑚𝑎𝑥) = 1 (4.55)

𝛼(𝜔𝑇 > 𝜔𝑇,𝑚𝑎𝑥) < 1 (4.56)

That is to say above 𝜔𝑇,𝑚𝑎𝑥, 𝛼 must decrease to keep 𝜔𝑇 close to its maxi-

mum value. We do this via a correction to 𝛼, Δ𝛼

𝛼′ = 𝛼 + Δ𝛼 (4.57)

In numerical modelling terms, 𝛼′ would represent the blade factor at the

next time step, and 𝛼 at the last: more on this in section 4.4.

An oscillatory problem We can view the pitch control mechanism of a

turbine and the interconnected behaviour of the turbine as a damped harmonic

oscillator.

104

4.3 Method overview

This interpretation of the control system first came about when a former,

rudimentary mechanism was introduced (one that just decreased 𝛼 at a fixed

rate when 𝜔𝑇 > 𝜔𝑇,𝑚𝑎𝑥): depending on relaxation parameter for 𝛼, oscillations

of both 𝛼 and 𝜔𝑇 could be produced. In fact, it was very difficult to get them

not to oscillate. Clearly, not only did 𝛼 affect 𝜔𝑇 and vice versa; the rates of

change of both were also interlinked.

The starting point in such an approach would be the damped spring equa-

tion, ie.

𝑚𝑋̈ + 𝑐𝑋̇ +𝐾𝑋 = 0 (4.58)

where 𝑋 is the displacement from equilibrium, and 𝐾, 𝑐, and 𝑚 are constants.

In our case 𝑋 = Δ𝜔𝑇 = (𝜔𝑇 − 𝜔𝑇,𝑚𝑎𝑥), thus

𝑚 ¨(Δ𝜔𝑇) + 𝑐 ˙(Δ𝜔𝑇) +𝐾(Δ𝜔𝑇) = 0 (4.59)

Which can be rewritten as

𝑚𝜔̈𝑇 + 𝑐𝜔̇𝑇 +𝐾𝜔𝑇 −𝐾𝜔𝑇,𝑚𝑎𝑥 = 0 (4.60)

Figure 4.11: Motion of a damped oscillator over time

Thus the system is capable of three types of oscillation: overdamped, un-

derdamped, and critically damped. 𝐾, 𝑐, and 𝑚 are defined by the physical

105

4.3 Method overview

and behaviour characteristics of the turbine, such as physical inertia, lift, blade

response to 𝜔𝑇 ; they are also affected – indirectly via fluid dynamics calcula-

tions – by properties of the fluid, such as 𝑢0, 𝜇 and 𝜌.

Because of the last set of dependencies, 𝐾, 𝑐 and 𝑚 are impossible to

calculate precisely. What we can be sure of is that if we model the turbine

blade response (via 𝛼) as a spring system, for different flow strengths the

system will exhibit all three types of damped oscillation previously mentioned.

As a result, care must be taken in modelling the physical response of the system

to the fluid strength, if it is to demonstrate stable behaviour in a variety of

conditions.

Towards a solution When the system was chosen to behave as a spring –

with 𝜔̈𝑇 a function of equilibrium displacement – numerical simulations showed

oscillation. Furthermore, the critical-damped equation constants were highly

sensitive to flow speed: a new model was needed.

Typically, the simulated turbine would ‘overshoot’, so that 𝜔̇𝑇 would still

be large at Δ𝜔𝑇 = 0. Thus, the first stated condition to avoid this is

𝜔̇𝑇 (𝜔𝑇 = 𝜔𝑇,𝑚𝑎𝑥) = 0 (4.61)

This also implies that 𝜔̇𝑇 is a function of 𝜔𝑇 . For simplicity, we make

this linear, with maximum and minimum values of (𝜔̇𝑇)𝑚𝑎𝑥 and −(𝜔̇𝑇)𝑚𝑎𝑥

respectively.

But what does this mean? It can be best envisaged as a driver accelerating

a car towards a certain speed. If our driver aims to travel at 50mph, say, he or

she simply does not accelerate hard towards that limit and instantly lift their

foot off the accelerator pedal at the right moment (and by the right amount)

when they reach 50mph; rather, they ease off the pedal slowly, decreasing the

car’s acceleration until they achieve the correct speed. It is damping, of a sort

– but active, rather than passive.

106

4.3 Method overview

Figure 4.12: 𝜔𝑇 versus 𝜔̇𝑇

Defining the bounds to our linear equation, we have

(𝜔̇𝑇)𝑚𝑎𝑥 =
𝑑𝜔𝑇

𝑑𝑡
≈ Δ𝜔*𝑇

Δ𝑡*
(4.62)

If we then define Δ𝑡* as Δ𝑡𝛼, the time taken for the blades from optimum to

parallel-flow position (see relaxation subsection in numerical modelling), and

Δ𝜔*𝑇 as 𝜔𝑇,𝑚𝑎𝑥, the maximum allowable angular velocity of the turbine, then

we have

(𝜔̇𝑇)𝑚𝑎𝑥 =
𝜔𝑇,𝑚𝑎𝑥

Δ𝑡𝛼
(4.63)

In the model, 𝜔̇𝑇 continuously fluctuates as a result of unsteady flow; it

needs to be adjusted to resemble figure 4.12 – the target values. The above

equation allows us to express the target value for 𝜔̇𝑇 as

(𝜔̇𝑇)𝑡𝑎𝑟𝑔 = (𝜔̇𝑇)𝑚𝑎𝑥 −
[︃
(𝜔̇𝑇)𝑚𝑎𝑥

𝜔𝑇,𝑚𝑎𝑥

]︃
𝜔𝑇 (4.64)

=
𝜔𝑇,𝑚𝑎𝑥 − 𝜔𝑇

Δ𝑡𝛼

107

4.3 Method overview

We then calculate the normalised difference between the actual value of

𝜔̇𝑇 , and the target value

𝑛 =

[︃
(𝜔̇𝑇)𝑡𝑎𝑟𝑔 − 𝜔̇𝑇

(𝜔̇𝑇)𝑚𝑎𝑥

]︃
(4.65)

𝛼𝑡𝑎𝑟𝑔 would be difficult to calculate, given that the link between it and 𝜔̇𝑇

depends upon CFD calculations. What we can do however, is adjust 𝛼 via Δ𝛼

until 𝜔𝑇 ≈ 𝜔𝑇,𝑚𝑎𝑥 (the condition 0 < 𝛼 < 1 notwithstanding).

If we define the maximum rate of change of 𝛼 as

𝛼̇𝑚𝑎𝑥 =
1

Δ𝑡𝛼
(4.66)

We can then write the corrective term to 𝛼 as

Δ𝛼 = Δ𝑡
(︂
𝛼̇ + 𝑛𝛼̇𝑚𝑎𝑥

2

)︂
(4.67)

Where 𝛼̇ is the current rate of change of 𝛼, and Δ𝑡 is the time over which

the change to 𝛼 is applied.

Calculating 𝛼 for soft limiting turbines

Older wind turbines often relied solely on stall to limit their performance at

higher wind speeds, such as the Kuriant 18. For completeness, the turbine

model was extended to accomodate this; however the behaviour can easily be

turned off to revert to hard limiting.

A simplified specification of the problem can be seen in figure 4.14. This

assumes the excess power beyond 𝑢0,𝑜𝑝𝑡 can be approximated by a straight line.

Below 𝑢0,𝑜𝑝𝑡, 𝜔𝑇 never exceeds 𝜔𝑇,𝑜𝑝𝑡 and so 𝛼 = 1, 𝜔𝑇,𝑚𝑎𝑥 = 𝜔𝑇,𝑜𝑝𝑡 always;

therefore the behaviour at the lower speeds is unmodified. We are concerned

with the behaviour of the turbine - specifically the calculation of 𝛼 - in the

region of 𝑢0,𝑜𝑝𝑡 < 𝑢0 < 𝑢0,𝑐𝑢𝑡𝑜𝑢𝑡. In this area, 𝜔𝑇,𝑚𝑎𝑥 > 𝜔𝑇,𝑜𝑝𝑡.

Since we already know 𝑃𝑊𝑜𝑝𝑡 from 𝑐𝑝,𝑜𝑝𝑡, and to calculate 𝑃𝑊𝑜𝑝𝑡,𝑐𝑢𝑡𝑜𝑢𝑡 we

must also specify 𝑐𝑝,𝑐𝑢𝑡𝑜𝑢𝑡 and 𝑢0,𝑐𝑢𝑡𝑜𝑢𝑡 too. These can be readily ascertained

from performance graphs for axial-flow wind and marine turbines, such as are

108

4.3 Method overview

Figure 4.13: Wind speed versus soft-limited power output of a Kuriant 18

turbine (Courtesy of Danish Wind Industry Association website)

available on www.wind-turbine.org (last accessed April 2008). If we assume a

linear relationship between 𝑢0 and 𝑢𝑚𝑎𝑥 where 𝑢0 > 𝑢0,𝑜𝑝𝑡, and that 𝑢0 = 0

when 𝑢𝑚𝑎𝑥 = 0, then we can express one as an approximation of the other:

𝑢0 =
(︂
𝑢0,𝑐𝑢𝑡𝑜𝑢𝑡

𝑢𝑐𝑢𝑡𝑜𝑢𝑡

)︂
𝑢𝑚𝑎𝑥 (4.68)

Remembering the linear increase in power with 𝑢0 beyond 𝑢0,𝑜𝑝𝑡, we can

make a stab at the maximum currently allowable power for the turbine:

𝑃𝑊𝑚𝑎𝑥 = 𝑃𝑊𝑜𝑝𝑡 +
(︂

Δ𝑃𝑊

Δ𝑢0

)︂
(𝑢0 − 𝑢0,𝑜𝑝𝑡) (4.69)

where Δ𝑃𝑊 = (𝑃𝑊𝑐𝑢𝑡𝑜𝑢𝑡 − 𝑃𝑊𝑜𝑝𝑡) and Δ𝑢0 = (𝑢0,𝑐𝑢𝑡𝑜𝑢𝑡 − 𝑢0,𝑜𝑝𝑡).

We can then calculate 𝜔𝑇,𝑚𝑎𝑥, the maximum operating angular velocity as

𝜔𝑇,𝑚𝑎𝑥(𝑢0,𝑜𝑝𝑡 < 𝑢0 < 𝑢0,𝑐𝑢𝑡𝑜𝑢𝑡) =

√︃
𝑃𝑊𝑚𝑎𝑥

𝐾𝜏

(4.70)

𝐾𝜏 being the constant previously defined in equation 4.18.

We can now calculate Δ𝛼 as per section 4.3.5, with our redefined 𝜔𝑇,𝑚𝑎𝑥.

Cut-in and cut-out speeds

In both wind and marine turbines, there are both minimum flow speeds below

which the turbine will no longer function, and maximum speeds beyond which

109

4.3 Method overview

Figure 4.14: Idealised graph of power output for soft-limited performance

the turbine will shut down to avoid damage to the turbine. We call these

cut-in and cut-out speeds respectively; we shall label them 𝑢𝑐𝑢𝑡𝑖𝑛 and 𝑢𝑐𝑢𝑡𝑜𝑢𝑡

Real turbines have flow speed indicators attached to their structures, but

we will instead take the maximum flow speed within the turbine, ie.

𝑢𝑚𝑎𝑥 = max (|𝑢(𝑥)|) (4.71)

where 𝑥 ∈ 𝑉𝑇

This gives us a value to compare to 𝑢𝑐𝑢𝑡𝑖𝑛 and 𝑢𝑐𝑢𝑡𝑜𝑢𝑡. Therefore, we can

define the conditions under which the turbine will not function:

𝑢𝑚𝑎𝑥 < 𝑢𝑐𝑢𝑡𝑖𝑛 (4.72)

𝑢𝑚𝑎𝑥 > 𝑢𝑐𝑢𝑡𝑜𝑢𝑡 (4.73)

If we set 𝛼 = 0 under the above conditions, then the turbine will effectively

stop working, and the values for 𝜔𝑁𝑃 , 𝜔𝐹𝐿, 𝜔𝑇 and 𝑃𝑊𝑒𝑥 will become zero.

It should be noted that due to body forces applied to the flow by the turbine,

𝑢𝑚𝑎𝑥 will be lower than the corresponding 𝑢0. Thus, 𝑢𝑐𝑢𝑡𝑖𝑛 and 𝑢𝑐𝑢𝑡𝑜𝑢𝑡 have

to be determined experimentally to provide the desired behaviour at specific

values of 𝑢0.

110

4.3 Method overview

Figure 4.15: Flowchart for calculating 𝛼

Combining pitch, stall and cut-in/out

Putting all this together, we can devise a simple flowchart for calculating 𝛼 .

It is conditionally a two-stage process, firstly comparing 𝑢𝑚𝑎𝑥 then 𝜔𝑇 , and is

detailed in figure 4.15.

4.3.6. Turbulence

Turbulence plays an important part in the performance of turbines, as was

first clearly stated by Lissaman [47]. The vortices generated at the blade tips,

and the flow separation that occurs at high angles of attack, both generate

turbulence which allows greater mixing of the surrounding fluid with the near-

stagnant flow behind the turbine, through a process known as momentum

diffusion. This effectively transfers kinetic energy to the more central parts

of the wake. In earlier revisions of the turbine model which did not model

turbulence, significant recirculation would occur at 𝑢0,𝑜𝑝𝑡 in the inner parts

of the wake several diameters downstream, thereby reducing the efficiency of

the model turbine as predicted by momentum theory. As this clearly effects

the wake and the power output, the effect of the vorticies at least must be

modelled, if not the vortices themselves.

The turbulent rings

Consider a thin disc at the tail-end of the turbine, of 𝐿𝑡𝑖𝑝 width, which consists

of an outer ring of (𝑅𝑇 −𝑅𝑡𝑖𝑝) thickness, and an inner ring of radius 𝑅𝑡𝑖𝑝. The

111

4.3 Method overview

outer ring is where the vortex turbulence is generated, and the inner ring where

lower-level turbulence from the rotor blades is created. Within this ring at the

axis is the hub section.

Figure 4.16: Pseudo-3D side and plan view showing the turbulent trailing

vortex rings of the model

We then choose our optimum turbulence intensity at the blade tips, 𝑇𝑖𝑥,𝑜𝑝𝑡.

Turbulence intensity is the standard deviation of fluid speed or velocity over

time, normalised by 𝑢0 so it lies between 0 and 1. 𝑇𝑖𝑥,𝑜𝑝𝑡 defines this in the x

direction, when the blades are rotating at 𝜔𝑇,𝑜𝑝𝑡, and from wake measurements

this can be defined as approximately within the range

0.12 ≤ 𝑇𝑖𝑥,𝑜𝑝𝑡 ≤ 0.20 (4.74)

With the upper end of the scale representing larger wind turbines (ie. > 20 m

diameter).

Three simplifying assumptions are made at this point:

1. The tip turbulence intensity 𝑇𝑖𝑥 at any given moment varies linearly

with the angular velocity of the turbine blades

2. No turbulence is generated by the turbine when the blades are not ro-

tating, ie. when 𝜔𝑇 = 0

112

4.4 Numerical modelling

3. The hub section does not generate any turbulence.

This leads to the equation calculating the time-dependent tip turbulence

intensity in the x-direction:

𝑇𝑖(𝑡)𝑥 = 𝑇𝑖𝑥,𝑜𝑝𝑡

[︃
𝜔𝑇 (𝑡)

𝜔𝑇,𝑜𝑝𝑡

]︃
(4.75)

We then turn to the radial component of the turbulence intensity. Orbital

turbulence is ignored, since this will be partially induced by the rotation of the

wake by the turbine algorithm, and also since we are primarily looking at the

tip-induced turbulence which encourages the outer layers of the wake to mix

with the stagnant inner core. From Vermeer et al, pp 494 [73] we can make a

rough approximation to radial turbulence

𝑇𝑖(𝑡)𝑟𝑎𝑑 ≈
1

2
𝑇𝑖𝑥 (4.76)

Now we look at the turbulence generated by the length of the blades, in

the inner disc section. The turbulence profiles in Hassain et al, pp2260 [37],

show turbulence dropping to roughly half that near the tips. Thus if we write

𝑇𝑖 =

⎡⎢⎣ 𝑇𝑖𝑥

𝑇𝑖𝑟𝑎𝑑

⎤⎥⎦ (4.77)

Then

𝑇𝑖𝑖𝑛𝑛𝑒𝑟 ≈
1

2
𝑇𝑖 (4.78)

Lastly, within the hub volume we define the turbulence as

𝑇𝑖𝐻 = 0 (4.79)

These turbulence components are then applied to the flow in a way that

shall be detailed in the numerical modelling section below.

113

4.4 Numerical modelling

4.4. Numerical modelling

In this part, we take the equations of the previous section, and develop them for

discrete numerical simulation. The model itself was developed to operate with

Fluidity, a CFD solver from Imperial College, London [63]. This uses finite

element analysis with unstructured adaptive meshes, however the model itself

is generic enough to be applied to finite difference or finite volume techniques.

4.4.1. Translation, rotation and volume definition

First, we translate and rotate the co-ordinate system and velocity field so that

centroid of the marine turbine is at (0, 0, 0) and the blade ’surface’ is aligned

to the y-axis:

𝑥′ = 𝑅−𝜑

⎡⎢⎢⎢⎢⎢⎣
𝑥− 𝑥𝑇

𝑦 − 𝑦𝑇

𝑧 − 𝑧𝑇

⎤⎥⎥⎥⎥⎥⎦ (4.80)

where 𝑅−𝜑 =

⎡⎢⎢⎢⎢⎢⎣
cos𝜑 sin𝜑 0

− sin𝜑 cos𝜑 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
And

𝑢′(𝑥′) = 𝑅−𝜑𝑢(𝑥) (4.81)

Dropping the ′ for brevity, we then define the volume that the turbine

occupies, 𝑉𝑇 , as

−𝐿
2
≤ 𝑥 ≤ 𝐿

2
and

√︁
(𝑦2 + 𝑧2) ≤ 𝑅𝑇

4.4.2. Velocity changes inside the turbine

About nodes and elements

In a typical simulation run, at each time-step the turbine algorithm calculates

the body forces acting on the fluid.

114

4.4 Numerical modelling

Figure 4.17: A row of cubic elements in the turbine volume

At any point in time 𝑡, there are 𝑁 nodes within the volume 𝑉𝑇 inhabited

by the turbine. 𝑁 is a function of 𝑡, as are the nodes contained within 𝑉𝑇 . It

is at these nodes we specify the body forces. These nodes form the corners of

the elements, but we do not need to know the specifics of their geometry, since

the model is node-centric rather than element-centric.

The properties of any turbine node 𝑖 are denoted as 𝑥𝑖, 𝑢𝑖, etc. – so 𝑥𝑖 is

valid ∀𝑖, where 1 ≤ 𝑖 ≤ 𝑁 .

Angular velocity and local solidity in the blade volume

To recall, the angular velocity of the fluid in a small volume 𝛿𝑉 leaving the

free-wheeling turbine at radial distance 𝑟 is calculated, with effective solidity

included, as:

𝜔𝑁𝑃 (𝑟) = 𝑓
𝛼

𝑟
𝛽′(𝑟)𝑢(𝑥) (4.82)

We re-write this in discrete form as:

𝜔𝑁𝑃,𝑖 = 𝑓
𝛼

𝑟𝑖

𝛽′(𝑟𝑖)𝑢𝑖 (4.83)

where

𝑟𝑖 =
√︁
𝑦2

𝑖 + 𝑧2
𝑖 (4.84)

This gives us enough to calculate the body forces on each element.

115

4.4 Numerical modelling

In the blade volume

From a numerical point of view, the body force on the fluid is specified in

terms of force density, ie. the force per unit volume. This means that we have

to first consider the force acting over the whole of the turbine first.

When in free-wheeling (no power extraction) mode, the model will increase

the angular velocity of the fluid passing through the turbine by 𝜔𝑁𝑃 (𝑟). The

angular acceleration of the fluid is uniform throughout the volume for the same

radial distance, so that nodes near the turbine intake can be treated similarly

to those near the outlet provided they share the same value of 𝑟.

Problem: initial hypothesis Supposing we have a mesh node, 𝑖, which

has physical co-ordinates 𝑥𝑖, satisfying the condition 𝑅𝐻 ≤ 𝑟𝑖 < 𝑅𝑇 . We could

write the change in the 𝑦 and 𝑧 components of velocity for that node 𝑖 due to

orbital forces as

Δ𝑣𝑁𝑃,𝑖 = −𝜔𝑁𝑃,𝑖𝑧𝑖 (4.85)

Δ𝑤𝑁𝑃,𝑖 = 𝜔𝑁𝑃,𝑖𝑦𝑖 (4.86)

These equations give us the backthrust component of the velocity:

Δ𝑢𝑖 = −
√︁

(Δ𝑣2
𝑁𝑃,𝑖 + Δ𝑤2

𝑁𝑃,𝑖) (4.87)

We now calculate the actual orbital velocity changes actually applied to

the fluid. These are:

Δ𝑣𝑖 = −𝜔𝐹𝐿,𝑖𝑧𝑖 (4.88)

Δ𝑤𝑖 = 𝜔𝐹𝐿,𝑖𝑦𝑖 (4.89)

There is a problem with above equations, however. How do we calculate

𝜔𝑁𝑃,𝑖 and 𝜔𝐹𝐿,𝑖?

116

4.4 Numerical modelling

Solution: the normalised solidity function 𝜔𝑁𝑃,𝑖 and 𝜔𝐹𝐿,𝑖 are spatially-

varying, and cannot universally be constructed in a relaxed form (see section

4.4.6). While a fixed-mesh, finite-difference scheme would have little trouble,

due to the nature of hr-adaptive FEM, it is awkward to relax either without

computationally expensive interpolation, as the point 𝑥𝑖 may not exist in the

next time step. To get around this, we introduce what programmers call a

‘hack’. Firstly, we calculate the spatial mean angular velocity of fluid in the

free wheeling turbine:

𝜔𝑁𝑃 =
1

𝑁

𝑁∑︁
𝑖=1

𝜔𝑁𝑃,𝑖 (4.90)

If we then introduce what we might call a normalised solidity function, for

which the following must be true ∀𝑖:

𝜔𝑁𝑃,𝑖 = 𝜔𝑁𝑃𝛽
*(𝑟𝑖) (4.91)

𝛽*(𝑟𝑖) is essentially the local (effective) solidity scaled so that the total

effective solidity is 1, therefore

𝛽*(𝑟𝑖) =
𝛽′(𝑟𝑖)

𝐵′ (4.92)

This allows us to rewrite the velocity changes as

Δ𝑣𝑁𝑃,𝑖 = −𝜔𝑁𝑃𝛽
*(𝑟𝑖)𝑧𝑖 (4.93)

Δ𝑤𝑁𝑃,𝑖 = 𝜔𝑁𝑃𝛽
*(𝑟𝑖)𝑦𝑖 (4.94)

And so we can calculate Δ𝑢𝑖. If we now similarly define 𝜔𝐹𝐿,𝑖 as

𝜔𝐹𝐿,𝑖 = 𝜔𝐹𝐿𝛽
*(𝑟𝑖) (4.95)

Where

𝜔𝐹𝐿 =
1

𝑁

𝑁∑︁
𝑖=1

𝜔𝐹𝐿,𝑖

117

4.4 Numerical modelling

This gives us the orbital components of the velocity changes:

Δ𝑣𝐹𝐿,𝑖 = −𝜔𝐹𝐿𝛽
*(𝑟𝑖)𝑧𝑖 (4.96)

Δ𝑤𝐹𝐿,𝑖 = 𝜔𝐹𝐿𝛽
*(𝑟𝑖)𝑦𝑖 (4.97)

This makes it much easier to relax the acceleration equations, since 𝜔𝑁𝑃

and, by proxy, 𝜔𝐹𝐿 are both global properties of the turbine. Also, by taking

the spatial average of 𝜔𝑁𝑃 this has the additional benefit of ironing out any

spatial ’hiccups’ in the velocity fields which could further serve to destabilise

the algorithm.

In the hub volume

The volume that contained the hub is treated as a special case. Unlike the blade

volume around it, it does not generate circulation. It should not necessarily

extract energy from the flow either; it can either allow the flow to pass freely,

or act as a simple momentum sink.

We shall consider a set of 𝑀 points contained in the hub volume, ie. where

𝑟𝑖 < 𝑅𝐻 for 𝑖 = {1, 2, ...𝑁}, for calculating body forces generated by the hub.

The hub itself occupies an insignificant portion of the main model volume.

For 𝑅𝐻 ≈ 1
10
𝑅𝑇 , the number of nodes in the hub volume will be 𝑀 ≈ 1

100
𝑁 ,

where 𝑁 is number of nodes in the total volume. As 𝑀 << 𝑁 and the

contribution to 𝑢̄ of the hub is so small, it is safe to use global values such as

Δ𝜔2 and 𝑢̄ when dealing with the blade volume.

We make the assertion that if the solidity density of the hub is unity (𝛽𝐻 =

1), then the fluid will be decelerated to near stagnation at the outflow. This

affects the proportion of the momentum that is removed. For each node 𝑖, the

changes in the velocity components are

Δ𝑢𝐹𝐿,𝑖 = −𝛽𝐻𝑢𝐻 (4.98)

118

4.4 Numerical modelling

Δ𝑣𝐹𝐿,𝑖 = 0 (4.99)

Δ𝑤𝐹𝐿,𝑖 = 0 (4.100)

4.4.3. Modelling turbulence

Revisiting the turbulence ideas discussed in section 4.3.6, we now ascribe some

dimensions. 𝐿𝑡𝑖𝑝 is defined so that it is just over one element thick: this ensures

that turbulence forces will be applied in as thin a volume as possible. Therefore

𝐿𝑡𝑖𝑝 = 2(Δ𝑥) (4.101)

Now to define the points contained in the tip ring, and the inner ring – no

turbulence is generated in the hub volume. We only apply our turbulence to

a node 𝑥𝑖 within the turbine when

(
𝐿

2
− 𝐿𝑡𝑖𝑝) < 𝑥𝑖 <

𝐿

2
(4.102)

The radial constraints are

1. 𝑅𝑡𝑖𝑝 ≤ 𝑟𝑖 < 𝑅𝑇 : tip turbulence ring

2. 𝑅𝐻 < 𝑟𝑖 < 𝑅𝑡𝑖𝑝 : inner turbulence ring

where 𝑟𝑖 =
√︁
𝑦2

𝑖 + 𝑧2
𝑖

We now have to calculate the changes in velocity for each point that satis-

fies these conditions. In a concession to the LES turbulence scheme Fluidity

employs [45] [54], it was decided that by simply applying turbulence velocity

changes to the fluid, turbulence effects such as turbulence viscosity would be

triggered in a satisfactory manner. It has two components: radial, and axial.

The radial component of the velocity change is Δ𝑢𝑟𝑎𝑑,𝑇 𝑖 and x-axis compo-

nent Δ𝑢𝑇 𝑖. These are defined for point 𝑖 as

119

4.4 Numerical modelling

Figure 4.18: View of radial and x-axis components of turbulent velocity

changes

Δ𝑢𝑟𝑎𝑑,𝑇 𝑖 =

⎧⎪⎨⎪⎩ 𝑇𝑖𝑟𝑎𝑑,𝑖𝑛𝑛𝑒𝑟 . 𝑢0𝐺(𝑡) if 𝑟𝑖 < 𝑅𝐻

𝑇𝑖𝑟𝑎𝑑 . 𝑢0𝐺(𝑡) if 𝑅𝐻 ≤ 𝑟𝑖 < 𝑅𝑇

(4.103)

Δ𝑢𝑇 𝑖 =

⎧⎪⎨⎪⎩ 𝑇𝑖𝑥,𝑖𝑛𝑛𝑒𝑟 . 𝑢0𝐺(𝑡) if 𝑟𝑖 < 𝑅𝐻

𝑇𝑖𝑥 . 𝑢0𝐺(𝑡) if 𝑅𝐻 ≤ 𝑟𝑖 < 𝑅𝑇

(4.104)

Where 𝐺(𝑡) is a Gaussian random number generator – Gaussian, because

the characteristics of turbulence spectra for turbine generated turbulence are

not known, and this distribution is the simplest, reasonable assumption; Gaus-

sian distributions are found in many natural phenomena.

Since we do not know 𝑢0, we can approximate it in the following manner,

which was found through extensive prelimary testing to be reasonably accurate:

𝑢0 ≈ 1.1 𝑢𝑚𝑎𝑥 (4.105)

We then calculate the 𝑦 and 𝑧 components

Δ𝑣𝑇 𝑖 =
(︂
𝑦𝑖

𝑟𝑖

)︂
Δ𝑢𝑟𝑎𝑑,𝑇 𝑖 (4.106)

Δ𝑤𝑇 𝑖 =
(︂
𝑧𝑖

𝑟𝑖

)︂
Δ𝑢𝑟𝑎𝑑,𝑇 𝑖 (4.107)

120

4.4 Numerical modelling

Next we have to establish a time-scale over which to apply the acceleration.

Since we do this roughly over the length of one element, we can write this as

Δ𝑡𝑇𝑖 =
𝐿𝑡𝑖𝑝

𝑢̄
(4.108)

4.4.4. Per-node force terms

Now we need to express the changes in velocity as body forces acting on the

fluid. Before these can be calculated, we need to know the time over which

the non-turbulent forces act – this is the time the fluid takes to pass through

the turbine model’s cylindrical volume. Recalling the mean speed of the fluid

through the turbine as

𝑢̄ =
1

𝑁

𝑁∑︁
𝑖=1

𝑢𝑖 (4.109)

and the mean speed of the fluid through the hub as

𝑢̄𝐻 =
1

𝑀

𝑀∑︁
𝑖=1

𝑢𝑖 (4.110)

We can then define the time for fluid to travel through the turbine as

Δ𝑡𝑇 =

⎧⎪⎨⎪⎩
𝐿

𝑢̄𝐻
if 𝑟𝑖 < 𝑅𝐻

𝐿
𝑢̄

if 𝑅 <𝐻≤ 𝑟𝑖 < 𝑅𝑇

(4.111)

We still have to get the net force applied over an element, 𝐹 𝑖. Including

the turbulence terms, we have acceleration vector components

𝑢̇𝑖 =
(︂

Δ𝑢𝑖

Δ𝑡𝑇

)︂
+
(︂

Δ𝑢𝑇 𝑖

Δ𝑡𝑇 𝑖

)︂
(4.112)

𝑣̇𝑖 =
(︂

Δ𝑣𝑖

Δ𝑡𝑇

)︂
+
(︂

Δ𝑣𝑇 𝑖

Δ𝑡𝑇 𝑖

)︂
(4.113)

𝑤̇𝑖 =
(︂

Δ𝑤𝑖

Δ𝑡𝑇

)︂
+
(︂

Δ𝑤𝑇𝑖

Δ𝑡𝑇 𝑖

)︂
(4.114)

The force per unit volume for element 𝑖 will then be

121

4.4 Numerical modelling

𝐹 𝑖 = 𝜌

⎡⎢⎢⎢⎢⎢⎣
𝑢̇𝑖

𝑣̇𝑖

𝑤̇𝑖

⎤⎥⎥⎥⎥⎥⎦ (4.115)

ie.

𝐹 𝑖 = 𝜌𝑢̇𝑖 (4.116)

4.4.5. Power

Recalling the analytic form of the power equation (3.9)

𝑃𝑊𝑒𝑥 =
1

4
𝜌𝜋𝑅4

𝑇 (𝜔2
𝑁𝑃 − 𝜔2

𝐹𝐿)𝑢̄ (4.117)

It is clear that, since 𝜔2
𝑁𝑃 and 𝜔2

𝐹𝐿 now vary with 𝑟 due to local solidity,

that we have to use mean values instead, ie.

𝑃𝑊𝑒𝑥 =
1

4
𝜌𝜋𝑅4

𝑇 (𝜔2
𝑁𝑃 − 𝜔2

𝐹𝐿)𝑢̄ (4.118)

We write this as

𝑃𝑊𝑒𝑥 =
1

4
𝜌𝜋𝑅4

𝑇 (Δ𝜔2)𝑢̄ (4.119)

Δ𝜔2 can be expressed in numerical terms as

Δ𝜔2 =
1

𝑁

𝑁∑︁
𝑖=1

(︁
𝜔2

𝑁𝑃,𝑖 − 𝜔2
𝐹𝐿,𝑖

)︁
(4.120)

Bearing in mind that 𝜔𝐹𝐿,𝑖 = (1−𝑄)𝜔𝑁𝑃,𝑖, this becomes

Δ𝜔2 =
1

𝑁

[︁
1− (1−𝑄)2

]︁ 𝑁∑︁
𝑖=1

𝜔2
𝑁𝑃,𝑖 (4.121)

When the mean x-component of the velocity, 𝑢 has been calculated

𝑢 =
1

𝑁

𝑁∑︁
𝑖=1

𝑢𝑖 (4.122)

Then the power extracted by the turbine can be derived, giving

122

4.4 Numerical modelling

𝑃𝑊 𝑒𝑥 =
1

4
𝑁𝜌𝜋𝑅4

𝑇

[︃(︁
1− (1−𝑄)2

)︁ 𝑁∑︁
𝑖=1

𝜔2
𝑁𝑃,𝑖

]︃
𝑁∑︁

𝑖=1

𝑢𝑖 (4.123)

4.4.6. Relaxation of variables

Relaxation is a technique by which the calculation of variables at each iteration

may be stabilised. Without relaxation, these variables may fluctuate in an

erratic manner, particularly when there is an interdependence between them

and the flow field – as is the case here. Only global calculated properties of

the turbine are relaxed: elemental node values could not be, since adaptivity

meant that at the next iteration no guarantees could be that a particular node

would still exist. Further to that, new nodes could be created, which would

not have a previous value with which to relax to.

If we have a set 𝑃 of global properties of the turbine, then 𝑝𝑖 is the 𝑖𝑡ℎ

member of that set; at time-step 𝑛, this is written 𝑝𝑖(𝑛). To calculate 𝑝𝑖 for

the next time-step, 𝑛+1, we first calculate the tentative, non-relaxed new value

of this property, 𝑝*𝑖 . Then we put this into a relaxed form, and so calculate 𝑝𝑖

for the next time-step

𝑝𝑖(𝑛+ 1) = (1− 𝛾𝑖)𝑝
*
𝑖 + 𝛾𝑖𝑝𝑖(𝑛) (4.124)

where 𝛾𝑖 is the relaxation parameter for that global turbine property 𝑝𝑖,

and

0 < 𝛾𝑖 < 1 (4.125)

for all 𝑖.

List of relaxed variables

Only a select few properties were relaxed, since many are derived from others

and thus not directly responsible for stability. The relaxation parameter 𝛾𝑣𝑒𝑙

relaxes variables directly related to fluid velocity and the rotation of the turbine

blades. These variables are:

123

4.4 Numerical modelling

(𝑢)𝑛+1 = (1− 𝛾𝑣𝑒𝑙)(𝑢)
* + 𝛾𝑣𝑒𝑙(𝑢)𝑛 (4.126)

𝑢𝑚𝑎𝑥,𝑛+1 = (1− 𝛾𝑣𝑒𝑙)𝑢
*
𝑚𝑎𝑥 + 𝛾𝑣𝑒𝑙𝑢𝑚𝑎𝑥,𝑛 (4.127)

(𝜔𝑁𝑃)𝑛+1 = (1− 𝛾𝑣𝑒𝑙)(𝜔𝑁𝑃)* + 𝛾𝑣𝑒𝑙(𝜔𝑁𝑃)𝑛 (4.128)

(Δ𝜔2)𝑛+1 = (1− 𝛾𝑣𝑒𝑙)(Δ𝜔2)* + 𝛾𝑣𝑒𝑙(Δ𝜔2)𝑛 (4.129)

(4.130)

Please note that the blade parameter 𝛼 is not here – 𝛼 is a unique case

requiring special treatment, detailed below.

Calculation of relaxation parameters

As well as introducing numerical stability to the model, relaxation can also

be seen as an algorithmic interpretation of inertia. In reality, inertia and

momentum of the turbine blades about their axis of rotation, and in blade

pitch response, introduce a delayed response of the turbine to a change in flow

conditions. We call these delays relaxation times, and we can make reasonable

estimates of what they should be. The values presented are for wind turbines

only: those for marine turbines differ, and are detailed in section 6.4.

Wind turbines can take up to a minute or more to speed up to full power,

and so taking into account the inertia of the fluid itself we can set

𝑡𝑟𝑒𝑙𝑎𝑥,𝑣𝑒𝑙 ≈ 20𝑠 (4.131)

The blade pitch adjusts more quickly, and so we can write approximately

𝑡𝑟𝑒𝑙𝑎𝑥,𝛼 ≈ 15𝑠 (4.132)

For 𝑡𝑟𝑒𝑙𝑎𝑥,𝑣𝑒𝑙 to be translated into 𝛾𝑣𝑒𝑙, we first ascribe a minimum value, to

prevent the model becoming unstable:

𝛾𝑚𝑖𝑛 = 0.5 (4.133)

The tentative value is calculated as

124

4.4 Numerical modelling

𝛾*𝑣𝑒𝑙 = 1−
(︃

Δ𝑡

𝑡𝑟𝑒𝑙𝑎𝑥,𝑣𝑒𝑙

)︃
(4.134)

where Δ𝑡 is the timestep size of the simulation.

And so, the relaxation parameter is defined thus

𝛾𝑣𝑒𝑙 =

⎧⎪⎨⎪⎩ 𝛾*𝑣𝑒𝑙 if 𝛾*𝑣𝑒𝑙 > 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛 if 𝛾*𝑣𝑒𝑙 < 𝛾𝑚𝑖𝑛

(4.135)

As for 𝛼, if we recall the definition of (𝜔̇𝑇)𝑚𝑎𝑥 in (4.63):

(𝜔̇𝑇)𝑚𝑎𝑥 =
𝜔𝑇,𝑚𝑎𝑥

Δ𝑡𝛼

Δ𝑡𝛼 is effectively our relaxation time for 𝛼, so the equation above becomes

(𝜔̇𝑇)𝑚𝑎𝑥 =
𝜔𝑇,𝑚𝑎𝑥

𝑡𝑟𝑒𝑙𝑎𝑥,𝛼

(4.136)

Furthermore, from (4.67)

Δ𝛼 = Δ𝑡 (𝛼̇ + 𝑛𝛼̇𝑚𝑎𝑥)

It can be seen that as Δ𝑡 is the simulation time step size, Δ𝛼 will decrease

in magnitude also; behaviour that we would expect from the relaxed equations

using 𝛾𝑣𝑒𝑙.

125

Chapter 5

Software design

5.1. Introduction

5.1.1. Design ethos

From the outset, the turbine model was designed as an external component to

‘piggy-back’ on top of a computational fluid dynamics (CFD) software pack-

age, with no dependency upon that package apart from flow field variables.To

this end, while it currently relies on the Imperial College finite element CFD

software, there is essentially no reason why it could not interface with com-

merical packages such as CFX, which support external code [7]. Furthermore,

while the turbine model should be capable of running on a modest, single-CPU

workstation, it should be able take advantage of additional computing power

where available.

This approach has fundamental technical implications:

1. Code independence. Routines within the turbine module cannot

utilise routines within a particular CFD package: it must be effectively

self-contained, to maintain portablity, reliability and interoperability.

This is consistent with modular programming philosophy.

2. Narrow external API. Following from above, the API (application

programming interface) visible to the external CFD program should be

minimal: that is to say, only pass on data required to model the turbine,

and no more. It also means that any data passed back from the module

will also be minimal: that information passed back to the calling program

is no more than it requires to perform fluid dynamics calculations.

126

5.1 Introduction

Essentially, any information which can be passed to and from the turbine

module which created a dependence on a particular CFD package, was

rejected.

3. Parallelism. To fully exploit additional computing resources, the tur-

bine module should be capable of running across multiple processors -

this assumes the underlying CFD software is capable of parallelism also.

5.1.2. Interface to the module

The intention was that Fluidity would call the turbine module each time-

step prior to its Navier-Stokes solver, so that any terms passed back from the

module could be used to solve the flow for that time-step.

Due to the narrow API requirement, information passing was kept to a

bare minimum. The data flow can be represented as in the following diagram.

Figure 5.1: Flow of data to and from the turbine module per timestep

Essentially, physical properties of the fluid are passed in, and force per-

unit-volume terms are passed back to the CFD program for solution of Navier-

Stokes: this is done via a bridging interface - this will be discussed further in

section 5.2.

127

5.1 Introduction

5.1.3. Parallel programming

Multiple instruction, multiple data

Fluidity uses a MIMD (multiple instruction multiple data) parallel program-

ming model and so this was the technique chosen for the turbine model. It

is a common choice for implementing parallelism in numerical simulation, and

allows for easy deployment on workstations, computing clusters, and super-

computers, since the necessary software is readily available for each.

In a MIMD data model, several processes run in parallel on different proces-

sors, each having its own local memory. Typically, the computational problem

has been carved up into similarly-sized chunks, and each portion allocated to

a seperate processor – usually each one runs a separate instance of the same

program, but with different data. This means that, while the array 𝐴 in your

program may be filled with certain values on one processor, the same array

may have completely different values on a different processor. In fact, it is

more than likely that 𝐴 will be associated with a different part of the solution

space.

Figure 5.2: MIMD division of solution space with boundaries

Each process has a boundary in the computational problem, which it shares

with neighbouring processes – in Fluidity these are called halos – and so to keep

128

5.1 Introduction

the values in this shared space current, each process regularly communicates

with its neighbours and exchanges information regarding the boundary regions.

The strength of using MIMD techniques in parallel computing is that, due

to the subdivision of the solution space into smaller, more manageable chunks,

large computational problems can be tackled with an adequate number of pro-

cessors. However, there are implications for their use, which affect the nature

of the problems that can be solved, and how algorithms can be implemented:

1. Communication overhead. As all data is local to each process, in-

terprocess communication becomes essential for computation – but at a

price. This communication, through a shared memory bus or especially

across a local network, introduces latency which must be minimised if

full CPU utilisation is be achieved. As such, this affects the design of

any algorithm employing MIMD techiniques.

2. Increased computational complexity. Again, due to the local na-

ture of simulation data, the calculation of global variables is not always

straightforward: collation is required, but bearing in mind any commu-

nication induced latency.

These had design consequences for the turbine module, which shall be

discussed in more detail in later sections.

The master-slave technique

Master-slave protocol is often used in a MIMD environment, where one process

(the master) has control over all the other processes (the slaves). While each

process still solves its own part of the problem, the master process takes on

the additional responsibilities of co-ordinating the slaves, and of handling data

output. The turbine model was implemented using the master-slave technique.

Often in this situation all the processes run the same program, with con-

ditional statements in the code to branch off into either master or slave be-

haviour. A simulation might consist of the following steps:

129

5.1 Introduction

Figure 5.3: MIMD division of solution space with boundaries in master-slave

arrangement

1. Start master process

2. Start slave processes

3. Each process identifies itself as either the master, or a slave

4. Initialise simulation and sub-divide problem

5. Start of iterative loop: solve subvolume locally

6. Exchange boundary data

7. Global variables calculation

- If master: receive data from slaves, calculate global values and

output results

- If slave: send data to master

8. End of iterative loop. Repeat loop until end conditions met.

MPI (Message-Passing Interface)

MPI is a high-level communications protocol for implementing parallel soft-

ware. It is hardware independent, and supports MIMD-style programming.

One of its main virtues is that while it can utilise a number of communications

infrastructures such as shared memory bus or TCP/IP, this remains invisible

to the programmer. Amongst the hardware arrangements it can support are:

130

5.1 Introduction

1. Single-core workstations (ie. older workstations/PCs). Commonly, one

process will run only, as ‘master’.

2. Multi-core workstations/servers. Here, communications run on the shared-

memory bus.

3. Distributed computing (Beowulf) cluster. TCP/IP sockets are used for

interprocess communication, since the processes will resides on a seperate

machine.

4. Supercomputers (Cray , IBM). The MPI implementation will be vendor-

specific, so as to utilise the unique hardware underneath.

While MPI is not an officially sanctioned standard, it is well-defined and

so broadly used that it has many software distributions that are interopera-

ble, and several which are freely available. Such distributions provide MPI

libraries (for compiling MPI-aware programs), and MPI binaries (for running

them). For this PhD, MPICH from the Argonne National Laboratory in the

US was chosen [53], as it is available at no cost and supports a wide range of

computing platforms. Fluidity and MPI were successfully installed and run on

the following hardware:

1. Single core workstation running Linux (corryvreckan.eps.hw.ac.uk)

2. Multiprocessor server running Linux (moskstraumen.eps.hw.ac.uk)

3. Heriot Watt’s distributed computing cluster (hwcluster.hw.ac.uk)

5.1.4. Development environment

In the preliminary stages, several programming languages were considered for

implementing the turbine model: C, C++, Fortran 77 and Fortran 90. Due to

Fortran’s reputation as the lingua franca of numerical computing, it would be

a convenient route for future collaborations. This reduced the choice down to

Fortran 77 or its successor, Fortran 90. Fortran 90 offers a variety of benefits

over Fortran 77, such as:

131

5.2 The CFD module interface

1. Derived types, ie. user defined variable types.

2. Dynamic memory allocation – arrays that have their size determined and

memory allocated at run-time.

In particular, such features of Fortran 77 such as common blocks become re-

dundant when using Fortran 90’s derived types, which offer an elegant method

of encapsulating data, and thus subroutine parameters. This shall be discussed

in more detail below.

The Intel Fortran compiler ‘ifort’ was chosen as the compiler for use in this

PhD, under the free academic license, given that it out-performs other free

compilers such as GFortran and G95 on the intended hardware platforms of

AMD and Intel-based PCs, across a variety of computational problems [5].

5.2. The CFD module interface

This essentially acts as a bridge between the CFD package (Fluidity) and the

turbine module itself. Our main reason for this is the ‘code independence’

clause: that is, to ensure that there is no Fluidity-dependent code within

the module itself. It can be thought of as a routine which mediates the data

Fluidity provides, presenting it to the turbine module in a format it can process

(and vice versa). In this way, the design of the module itself can be kept in

a generic form such that if, in future, support for another CFD package is

desired, all that is required is the writing of another bridging interface.

The call to the module interface was placed within a loop for iteratively

solving non-linear terms in the main controlling routine, prior to the source

and absorption terms being added to the momentum equations (see figure 5.4).

5.2.1. Variables passed from Fluidity

At each time-step, Fluidity calls the module interface, and passes several fluid

simulation state variables. These are listed in table 5.1; all are one-dimensional

arrays and real numbers unless otherwise stated.

132

5.2 The CFD module interface

Name I/O Description

𝑋, 𝑌 , 𝑍 in Arrays describing the position of each mesh node: 𝑋 =

{𝑥1, 𝑥2,𝑥𝑁} for a mesh of 𝑁 nodes; similarly for 𝑌 and

𝑍.

𝑈 , 𝑉 , 𝑊 in The 𝑥, 𝑦 and 𝑧 components of the flow field. 𝑈 =

{𝑢1, 𝑢2, ...𝑢𝑁}; similarly for 𝑉 and 𝑊 .

𝜌 in Density of fluid at each node. The turbine algorithm currently

only deals with incompressible fluids, and so only the first

value is used. This allows for future expansion to compressible

flows, however.

𝑋𝐴𝐵,

𝑌 𝐴𝐵,

𝑍𝐴𝐵

out 𝑥, 𝑦 and 𝑧 components of momentum absorption terms, of

unit 1
𝑡𝑖𝑚𝑒

. These are uninitialised prior to calling the module,

to be returned with values calculated by the turbine model.

𝑋𝑆𝑂𝑈 ,

𝑌 𝑆𝑂𝑈 ,

𝑍𝑆𝑂𝑈

out The components of the momentum source terms. As with the

absorption terms, these are passed empty and returned with

calculated values.

𝑡𝑎𝑐𝑐 in Number containing the accumulated simulation time.

Δ𝑡 in The time-step size for the simulation.

𝐼𝑛𝑜𝑛𝑙𝑖𝑛 in Fluidity can do several non-linear iterations to solve Navier-

Stokes, per time-step; this number tells which iteration it is

on.

𝑁𝑛𝑜𝑛𝑙𝑖𝑛 in The total number of non-linear iterations per time-step.

𝐹𝑟𝑒𝑚𝑒𝑠ℎ in Boolean flag which is set to 𝑡𝑟𝑢𝑒 if finite element mesh has

been adapted (ie. nodes moved, or added/deleted) since last

time-step.

Table 5.1: List of all variables passed to module by Fluidity and returned

133

5.2 The CFD module interface

Figure 5.4: Position of module interface call in Fluidity’s main control routine

5.2.2. Calling the module

The variables passed from Fluidity are simply passed straight to the module

for calculation. However, it is not simply a straightforward case of calculating

the absorption and source terms from the node values each time the module is

called; Fluidity has a few behaviour peculiarities which necessitate conditional

operation.

To this end, we have two flags which control the behaviour of the turbine

module.

1. 𝐹𝑢𝑝𝑑𝑎𝑡𝑒. A boolean flag set to 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒. When passed to the turbine

module, this tells it to update (ie. recalculate) global variables of the

turbine such as 𝜔𝑇 etc., or whether to simply re-use current values.

2. 𝐹𝑜𝑢𝑡𝑝𝑢𝑡. This boolean flag tells the module whether it should output

diagostic data such as 𝜔𝑇 , 𝑃𝑊𝑒𝑥 for this time-step.

The global variables of the turbine,such as 𝜔𝐹𝐿 (from which the absorption

and source terms are calculated),are only updated when 𝐹𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑡𝑟𝑢𝑒. This

is just after Fluidity has run its adaptive mesh algorithm: when adapting, it

134

5.3 The module

Figure 5.5: Flowchart deciding on output and remesh time-step counter

Figure 5.6: Decision flowchart for output flag and calling the turbine module

relies on interpolation to gradually correct the boundary regions to realistic

conditions through a ‘smearing effect’. Thus fluid properties in these regions

are unreliable for 𝑁𝑠𝑎𝑓𝑒 timesteps afterwards, and so are temporarily ignored.

Global turbine variables are frozen briefly, and momentum absorption/source

terms are calculated using these until the mesh safety counter 𝐼𝑠𝑎𝑓𝑒 reaches

zero. Experimentally 𝑁𝑠𝑎𝑓𝑒 = 3 gave the best results.

The interface routine also checks whether it is on the first non-linear iter-

ation or not. If it is not, 𝐹𝑜𝑢𝑡𝑝𝑢𝑡 and 𝐹𝑢𝑝𝑑𝑎𝑡𝑒 are set to 𝑓𝑎𝑙𝑠𝑒. This way, the

turbine variables are only updated and output once per time-step. The tur-

bine module does however still calculate and return the absorption and source

terms, as these are still required by the Navier-Stokes solver.

135

5.3 The module

5.3. The module

The module itself can be thought of as divided into two stages: initialisation,

and processing. The initialisation stage takes place only once, creating the

data structures for the turbine or turbines, which are then kept as persistent

variables between iterations. The processing stage, which occurs for each time-

step where 𝐹𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑡𝑟𝑢𝑒, can be thought of us having three sections:

1. Preparation where turbine nodes are found and their coordinate system

changed

2. Calculation where turbine and nodal variables are calculated

3. Variable collection and output where parallel variables are polled

and data written to file.

Figure 5.7: Subdivisions of turbine module and main subroutines

These sections will be covered in more detail below.

5.3.1. Preparation

Collecting turbine nodes

Here, the program determines which nodes are contained by the turbine volume

𝑉𝑇 and adds them to a list of nodes for later calculations. In a serial program,

this would be straightforward; however, in parallel it is quite possible that only

some instances of Fluidity within a parallel simulation contain turbine nodes.

136

5.3 The module

Or indeed, that nodes within the turbine volume reside on all of them – fig.

5.8 demonstrates this more clearly.

Figure 5.8: An example of the turbine volume cohabiting across several proces-

sors. Each shaded mesh represents a subdomain of the computational volume

that resides on a processor.

The basic algorithm is detailed below. Assume that we are building a set

of nodes 𝑆 = {𝑛1, 𝑛2, ...} that are contained within the turbine volume.

For each processor subdomain 𝑝:

1. For each node 𝑖 in 𝑝, check if in 𝑉𝑇 .

2. If 𝑖 is in 𝑉𝑇 , add it to 𝑆.

3. Send local copy of 𝑆 to all other processors

4. Receive copies of 𝑆 from other processors, call them 𝑆 ′.

5. For each node 𝑖 in 𝑆, and each node 𝑗 in 𝑆 ′:

(a) If |𝑥𝑖 − 𝑥𝑗| < 𝜖 where 𝜖 is some pre-defined error tolerance (ie.

are considered duplicate nodes from the subdomain halo), then let

|𝑢|𝑖 = |𝑢|𝑗 if |𝑢|𝑗 > |𝑢|𝑖.

(b) Otherwise, add node 𝑗 to 𝑆

In this way, a list of all nodes from all the subdomains contained in 𝑉𝑇 was

built up.

137

5.3 The module

Transforming to turbine co-ordinate system

Once the set of turbine nodes 𝑆 was built up, then the nodes had to be rotated

and translated to a turbine’s co-ordinate systems. Referring to section 4.4.1,

for each node 𝑖 in 𝑆, then the necessary position and velocity transformations

are

𝑥′𝑖 = 𝑅−𝜑

⎡⎢⎢⎢⎢⎢⎣
𝑥𝑖 − 𝑥𝑇

𝑦𝑖 − 𝑦𝑇

𝑧𝑖 − 𝑧𝑇

⎤⎥⎥⎥⎥⎥⎦ (5.1)

𝑢′𝑖 = 𝑅−𝜑 𝑢𝑖 (5.2)

where 𝑥′𝑖 and 𝑢′𝑖 represent the transformed positions and velocities which

are used to calculate the forces upon the fluid.

Correcting halo values

As previously mentioned in section 5.2.2, the node values within the halo

sections of the subdomains are unreliable. To this end, a crude interpolation

algorithm was used to ‘fill in the blanks’ where necessary.

Returning to our set 𝑆, for each node 𝑖 in 𝑆, if |𝑢𝑖| < 𝜖𝑢 and 𝑟𝑖 > 𝑅𝐻 ,

where 𝜖𝑢 is a given, small error tolerance, then we let

𝑢𝑖 = max(𝑢) +

(︃
𝑑𝑢

𝑑𝑥

)︃*
𝑑𝑖 (5.3)

where 𝑑𝑖 is taken at the 𝑥 displacement of node 𝑖 from the inlet of the

turbine, and
(︁

𝑑𝑢
𝑑𝑥

)︁*
is an approximation to the gradient of 𝑢 defined as 𝑑𝑢

𝑑𝑥

*
=

2
(︁

𝑢−max(𝑢)
𝐿

)︁
.

The 𝑦 and 𝑧 components of the velocity are specified as

𝑣𝑖 = −𝜔*𝐹𝐿𝑧𝑖 (5.4)

𝑤𝑖 = 𝜔*𝐹𝐿𝑦𝑖 (5.5)

138

5.3 The module

where 𝜔*𝐹𝐿 = (1−𝑄)
√

2𝑓𝛼𝛽′
(︁

𝑑
𝐿

)︁
𝑢, an estimation of the local fluid angular

velocity.

5.3.2. Calculation

The blade pitch parameter 𝛼

Before any other variables 𝛼 for the current time-step was calculated; see

section 4.3.5 for details.

Main variables

Here, the main turbine variables are calculated and expressed in relaxed form.

The first step is to calculate the instantaneous means of these variables, which

are

1. The mean free-wheeling angular velocity of fluid within the turbine vol-

ume 𝑉𝑇 , defined as

𝜔𝑁𝑃 = 𝐹𝛼
1

𝑁

𝑁∑︁
𝑖=1

(︃
𝛽′𝑖𝑢𝑖

𝑟𝑖

)︃
(5.6)

.

2. The mean value of 𝑢 of the 𝑥-component of the node velocities within

𝑉𝑇 .

𝑢 =
1

𝑁

𝑁∑︁
𝑖=1

𝑢𝑖 (5.7)

3. The mean value of 𝑢 within the hub volume

𝑢𝐻 =
1

𝑀

𝑁∑︁
𝑗=1

𝑢𝑗 (5.8)

where 𝑗 = 1...𝑀 represents the nodes contained within the hub volume.

4. Δ𝜔2, a component of the power equation, which is defined in (4.120) as

Δ𝜔2 =
1

𝑁

𝑁∑︁
𝑖=1

(︁
𝜔2

𝑁𝑃,𝑖 − 𝜔2
𝐹𝐿,𝑖

)︁
(5.9)

These were then relaxed as per section 4.4.6.

139

5.3 The module

5.3.3. Variable collection and output

In a parallel simulation where 𝑁𝑃 processor subdomains contain parts of 𝑉𝑇 ,

it stands to reason that there will also be 𝑁𝑃 copies of the turbine variables.

Even though each CFD process has gone through the same node collection

routine as the others, it was found that small discrepancies crept in between

the values held on each processor.

This presented a problem: since the time-dependent turbine variables were

to be saved to file, which sets of values were to be used? Furthermore, to

prevent file contention, only one process was allowed to write to the results file

– the master.

Figure 5.9: The collation of turbine variables in parallel simulation

The solution was to synchronise the turbine variables at each time step,

and write those values to file. It was decided that, rather than have one

processor’s variables overwrite those of the others, a weighted average would

be calculated which would be used by all the simulation processes. Assuming

we have set of turbine variables for each processor 𝑝, for the current and last

timesteps, defined as 𝑆𝑝 = {𝑢𝑝(𝑡), 𝑢𝑝(𝑡 − Δ𝑡), (𝜔𝐹𝐿)𝑝(𝑡), (𝜔𝐹𝐿)𝑝(𝑡 − Δ𝑡), ...},

then the procedure for synchronisation was as follows:

1. If master process:

(a) Await copies of 𝑆𝑝 from slave processes

140

5.3 The module

(b) When received, calculate weighted average of set as

𝑆 =
1

𝑀

𝑁𝑃∑︁
𝑝=1

𝑀𝑝𝑆𝑝 (5.10)

where 𝑀 is the total number of mesh nodes on all the processors,

and 𝑀𝑝 the mesh nodes on each processor 𝑝 (both excluding nodes

collected from other subdomains).

(c) Send 𝑆 to each slave.

(d) Write 𝑆 to results file.

2. If slave process:

(a) Send local copy of 𝑆𝑝 and 𝑀𝑝 to master

(b) Receive 𝑆 from master

(c) Set 𝑆𝑝 = 𝑆.

In this way, each 𝑆𝑝 would remain close in value to every other. As more

significant deviations usually occured in subdomains where 𝑀𝑝 was small, the

weighted average of 𝑆 insured that they would not unduly influence the results.

141

Chapter 6

Experiments and experimental
process

6.1. Overview

6.1.1. Aims

The model was validated by testing it at a variety of different windspeeds.

This had three points of attack.

1. By running a succession of simulations each with different freestream

velocity 𝑢0 via a Dirichlet inlet condition, and comparing the performance

of the turbine model as function of 𝑢0 with that of real turbines.

2. Looking at the wake structure for each value of 𝑢0, and comparing it

with known theory and experimental data.

3. Comparision of turbulence profiles with turbulence measurements of real

wind turbines.

6.1.2. Structure

The experiments can be thought of as separated into two sections. The first

section concerns itself with wind turbines in a wind tunnel: this can be seen as

an exercise in validation of the turbine model. Even though the eventual target

was to model axial-flow marine turbines, the wealth of experimental data and

theory regarding wind turbines and their wakes made them a compelling first

port of call.

With marine turbines, there is a comparative dearth of detailed, published

experimental data: partly through marine power being relatively new territory,

142

6.2 The turbine presence field

and presumably partly through protection of commercial interests. Thus the

assumption is made that that a horizontal axis marine turbine is, in effect,

similar to a horizonal axis wind turbine. We can say this – even though axial-

flow marine turbines cannot use stall to regulate due to blade scouring from

cavitation [30], so instead relying on blade pitch control – because the model

makes no distinction between the two, lumping both into its blade parameter

𝛼.

Therefore, the second section concerns itself with transforming the wind

turbine model into one of a marine turbine, based on as few assumptions as

possible. In this part, the simulations progress from a simple water tunnel to

more realistic environments, introducing bottom drag and a vertical velocity

gradient at the inlet.

6.2. The turbine presence field

Throughout prelimary simulation runs, one problem that presented itself was

ensuring the the turbine volume would contain enough nodes so that the model

would perform effectively. Whilst the turbine-induced velocity gradients would

appear to trigger Fluidity’s adaptive mesh algorithm, if the turbine relaxation

time was large, nodes would be removed from the turbine volume until none

were left – at that stage, the turbine effectively disappears.

To ensure that this never happened, a non-advective, non-diffusive tracer

property was introduced to the fluid. It was defined as a function of radial and

axial distance, and constrained to the limits 0 ≤ 𝑓𝑝𝑟𝑒𝑠 ≤ 1. To calculate the

turbine presence field, an algorithm would search for nodes within a greater

cylinder encompassing the turbine volume, with dimensions 𝐿′ = 5𝐿 and 𝑅′𝑇 =

2𝑅𝑇 . This would ensure that even if the initial mesh nodes lay outwith the

turbine volume, the adaptive algorithms would still be triggered to concentrate

nodes within it.

For a given node 𝑖, the turbine presence was calculated as

143

6.3 Wind turbines

𝑓𝑝𝑟𝑒𝑠,𝑖 =

[︃(︃
1− 2|𝑥𝑖|

𝐿′

)︃
.

(︃
1− 1− 𝑟𝑖

𝑅′𝑇

)︃]︃2

(6.1)

where 𝑟𝑖 =
√︁
𝑦2

𝑖 + 𝑧2
𝑖

A variety of alternatives were tried, such as simple linear ramp functions,

but this one performed the most consistently. Figure 6.1 shows the effect of

several adaptive sweeps.

Figure 6.1: A planar slice through a three-dimensional mesh, on three succes-

sive sweeps from left to right. The central square is the turbine volume.

6.3. Wind turbines

6.3.1. Choice of turbine

The Vestas V52 horizontal axis wind turbine was chosen for the wind turbine

simulations, produced by Vestas, who have almost a third of the wind turbine

market worldwide according to their website [3]. The V52 is still in production

with 2100 in use across the world [8]. Moreover, it features active blade pitch

control, in what Vestas call ‘OptiTip’, which is very similar to the control of

the power output by 𝛼 in the turbine model. For these reasons, it was deemed

a good candidate for modelling.

6.3.2. Defining turbine properties

Solidity and effective solidity

The net solidity 𝐵 can be found using photographs of said turbine, and a

graphics manipulation program such as the freely available GIMP. The process

144

6.3 Wind turbines

is as follows.

1. Firstly, an image must be taken of the turbine effectively ‘head on’, ie.

where the camera has been positioned pointing directly at the nacelle,

and parallel to the turbine axis. Figure 6.2 shows a V52 taken from the

media section of the Vestas website.

Figure 6.2: V52 from Vestas website

2. Then we select the blades and nacelle in the image, and remove the

background as can be seen in figure 6.3.

Figure 6.3: V52 blades selected from photograph

3. The blades are then coloured black, and a circle of a different colour

fitted to the blades, eg. as in figure 6.4.

145

6.3 Wind turbines

Figure 6.4: V52 blades contrasted and encircled

4. Having reduced the image to two colours, discounting the background,

we can can look at a histogram of the image colours, and calculate the

percentage of blade pixels from the total number of pixels in the image

(again, ignoring the background) – the V52 histogram can be seen in in

figure 6.5.

Figure 6.5: V52 image histogram

Depending on how the Vestas image was manipulated, the net solidity

came out at 𝐵 ≈ 0.04.

The effective solidity however cannot be determined in such a way. While

there is little reference to it in literature, after some trial and error 𝐵′ = 0.25

was decided upon as a good value.

146

6.3 Wind turbines

Hub solidity is express in terms of the local solidity. As the hub/nacelle

appears completely solid to the flow, we set

𝛽𝐻 = 1.0 (6.2)

That is, 𝛽𝐻 = 𝛽 where 0 < 𝑟 < 𝑅𝐻 .

Blade and hub cross-sectional geometry

From inspection of figure 6.4 and using published specifications, we see make

further reasonable estimates:

∙ Total turbine radius defined in [8] as 𝑅𝑇 = 26 m.

∙ A tip-width fraction of 𝑤 ≈ 1
10

∙ 𝑅𝐻 ≈ 1
10
𝑅𝑇 , also assumed by Sharpe [66].

∙ 𝑅𝑡𝑖𝑝 is expressed as a fraction of 𝑅𝑇 . It defines the radial distance from

the hub axis beyond which tip turbulence operates on the flow. The

value is set to ensure that the thin tubular volume created contains at

least a set of mesh nodes right around, and from end to end. Thus it

is dependent upon the minimum allowed size of elements; too small and

no nodes would be contained within the annular volume, and so no tip

turbulence would be generated.

For the V52 simulations, 𝑅𝑡𝑖𝑝 = 3
4
𝑅𝑇 .

∙ 𝐿, the length of the turbine volume. This length is constrained by the

minimum element size of the mesh (smaller elements means a larger

mesh, and slower simulation), and the Reynolds number of flow through

the blade volume: if we make 𝐿 too large, 𝑅𝑒𝑥 will adversely affect the

flow.

Since no data suggesting a suitable value could be found on the V52,

from observation of similar wind turbines, the cylindrical volume a real

V52 occupies would have 𝐿 ≈ 2− 3 m. Thus, setting 𝐿 = 10 m gives the

model an 𝑅𝑒𝑥 of the same order of magnitude as the real tubine.

147

6.3 Wind turbines

Parameters from performance graphs: optimum power efficiency,
cut-in/cut-out speeds, etc.

These parameters were sourced from the wind power calculator on the Danish

Wind Industry Association website [2] and from the V52 brochure [8]. In figure

6.6 we can see the power coefficient as a function of wind speed.

Figure 6.6: Wind speed versus 𝑐𝑃 for Vestas V52 (Courtesy of Danish Wind

Industry Association website)

∙ 𝑢0,𝑜𝑝𝑡, the freestream windspeed at peak efficiency. This is 𝑢0 when 𝐶𝑝

is at its maximum. The Danish Wind Industry website wind power

calculator gave this as 11 m/s; the V52 brochure as 13 m/s. After some

deliberation, from figures 6.6 and 6.7 it was decided to set 𝑢0,𝑜𝑝𝑡 ≈ 12 m/s.

∙ 𝑐𝑝,𝑜𝑝𝑡, the optimum power efficiency. From graph we can take this as

𝑐𝑝,𝑜𝑝𝑡 = 0.4.

∙ 𝜔𝑇,𝑜𝑝𝑡, the angular velocity of the turbine blades when the turbine is

operating at peak efficiency (ie. at 𝑢0 = 𝑢0,𝑜𝑝𝑡).

If we make reasonable assumptions from the V52 RPM statistics (see

Rotor section in [8]), then we can estimate 𝜆 = 7 which gives us 𝜔𝑇,𝑜𝑝𝑡 ≈

3.17.

148

6.3 Wind turbines

Figure 6.7: Wind speed versus 𝑃𝑊𝑒𝑥 for Vestas V52 (Courtesy of Danish Wind

Industry Association website)

∙ 𝑢0,𝑐𝑢𝑡𝑜𝑢𝑡 = 25 m/s from figure 6.6 and [8].

∙ 𝑢𝑐𝑢𝑡𝑖𝑛 = 4.0 m/s and 𝑢𝑐𝑢𝑡𝑜𝑢𝑡 = 23.5 m/s are effectively the values of

𝑚𝑎𝑥(𝑢𝑖) (where 𝑖 is any node within the turbine volume), at 𝑢0,𝑐𝑢𝑡𝑖𝑛

and 𝑢0,𝑐𝑢𝑡𝑜𝑢𝑡 inlet wind speeds respectively.

It should be noted that these were found imperically; even though the

turbine model uses the approximation 𝑢0 ≈ 1.1𝑚𝑎𝑥(𝑢𝑖) for turbulence

calculations (4.105), during simulation it was found that close to cut-in

and cut-out wind speeds the approximation was unsatisfactory.

∙ 𝑐𝑃,𝑐𝑢𝑡𝑜𝑢𝑡 – the power coefficient just below the turbine cutout speed.

Given the air density, cut-out speed and maximum power output (from

figure 6.7, this was calculated to be 𝑐𝑃,𝑐𝑢𝑡𝑜𝑢𝑡 ≈ 0.042.

Fluid dynamic properties

The flow factor 𝑓 , and the momentum extraction efficiency 𝑄, were perhaps

the most difficult parameters to define, due to their abstract nature. However,

they do have parallels in actuator disc theory – 𝑓 is related to the blade lift

coefficient in that it multiplies the effect of airflow across the blades, ie. the lift-

149

6.3 Wind turbines

generated thrust; and 𝑄 to the axial flow induction factor, in that it represents

the portion of forward fluid momentum lost due to energy extraction.

Using these as guides initially I set 𝑓 = 2.0 and 𝑄 = 0.5. The turbine

model was then run with an Dirichlet inflow condition of 𝑢0 = 12 m/s, and

these values adjusted until 𝑐𝑃,𝑜𝑝𝑡 occured at 𝑢0 ≈ 𝑢0,𝑜𝑝𝑡, where 𝛼 ≈ 1. Thus

the two fluid dynamic properties were ascertained experimentally as 𝑓 = 1.95

and 𝑄 = 0.65.

Turbulence

𝑇𝑖𝑜𝑝𝑡 represents the tip turbulence generated when 𝑢0 = 𝑢0,𝑜𝑝𝑡. This can be

set as 𝑇𝑖𝑜𝑝𝑡 = 0.15 (Hossain [37]). Gomez-Elvira [35] has this slightly higher

at 𝑇𝑖𝑜𝑝𝑡 = 0.20, but it should be noted that this only an approximate value,

since some turbulence will be generated by the rotation of the wake itself.

Relaxation times

We estimate that such wind turbines taken several minutes to achieve full

speed in peak conditions, therefore a reasonable relaxation time would be

𝑡𝑟𝑒𝑙𝑎𝑥,𝑣𝑒𝑙 = 20 s

Similarly, the blade relaxation time was set to a lower value (in order that

it could quickly counteract over-performance. Thus 𝑡𝑟𝑒𝑙𝑎𝑥,𝛼 = 10 s

6.3.3. Vestas V52, without inlet turbulence

Overview

The simulation domain consisted of a rectilinear channel – a cuboid wind

tunnel – as seen in figure 6.8, with a Dirichlet inlet condition on the left end

at 𝑥 = 0, and an open bounday at the right end. The four walls had a no-slip

condition, thus frictionless.

Wind tunnel dimensions

The wind tunnel was made long enough to ensure that the wind turbine wake

could fully develop (ie. 20 diameters downwind), and yet enough clearance

150

6.3 Wind turbines

Name Symbol Value

Radius of turbine 𝑅𝑇 26 m

Hub radius 𝑅𝐻
1
10
𝑅𝑇

Hub local solidity 𝐵𝐻 1.0

Tip width fraction 𝑤 1
10

Tip radius 𝑅𝑡𝑖𝑝
3
4
𝑅𝑇

Turbine volume length 𝐿 10 m

Net solidity 𝐵 0.04

Optimum net effective solidity 𝐵′
𝑜𝑝𝑡 0.25

Flow factor 𝑓 1.95

Momentum extraction efficiency 𝑄 0.65

Optimum freestream speed 𝑢0,𝑜𝑝𝑡 12 m/s

Optimum blade angular velocity 𝜔𝑇,𝑜𝑝𝑡 3.17 rad/s

Optimum power coefficient 𝑐𝑝,𝑜𝑝𝑡 0.4

Freestream wind speed at turbine cutout 𝑢0,𝑐𝑢𝑡𝑜𝑢𝑡 25 m/s

Power coefficient just below cut-out windspeed 𝑐𝑃,𝑐𝑢𝑡𝑜𝑢𝑡 0.042

𝑚𝑎𝑥(𝑢𝑖) at cut-in and cut-out 𝑢𝑐𝑢𝑡𝑖𝑛, 𝑢𝑐𝑢𝑡𝑜𝑢𝑡 4.0 m/s, 23.5 m/s

Tip-generated turbulence at 𝑢0 = 𝑢0,𝑜𝑝𝑡 𝑇𝑖𝑜𝑝𝑡 0.15

Turbine angular velocity relaxation time 𝑡𝑟𝑒𝑙𝑎𝑥,𝑣𝑒𝑙 20 s

Blade angle factor relaxation time 𝑡𝑟𝑒𝑙𝑎𝑥,𝛼 10 s

Table 6.1: List of physical properties of model of Vestas V52

151

6.3 Wind turbines

given to the front and sides so that blockage of the flow by the turbine would

not significantly affect the flow. Thus

𝑉𝑡𝑢𝑛𝑛𝑒𝑙 = 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 1400 m× 400 m× 400 m (6.3)

Turbine positioning

The turbine was positioned in the centre of the incoming flow near the left

end, with its axis parallel to it. Its position was given as

𝑥𝑇 =

⎡⎢⎢⎢⎢⎢⎣
200 m

200 m

200 m

⎤⎥⎥⎥⎥⎥⎦ (6.4)

Figure 6.8: The Vestas V52 simulation domain

Fluid properties

The air was taken to be incompressible, and assuming a temperature of 15𝑜 C

and idealised standard atmospheric conditions, we can assume the fluid dy-

namical properties are as in table 6.2.

Inlet conditions and adaptive mesh configuration

For each simulation run, the inlet wind speed was changed, to see how the

turbine model would perform in different conditions. These inlet wind speeds

152

6.3 Wind turbines

Name Symbol Value

Density 𝜌 1.23 kg m−3

Dynamic viscosity 𝜇 1.80× 10−5 Pa s

Table 6.2: Fluid properties of simulation air

𝑢0 (m/s)

5

9

10

12

15

17.5

20

22.5

25

Table 6.3: List of inlet wind speeds

are listed in table 6.3.

The tetrahedral mesh has two sets of parameters: those which are invariant

with the inlet flow speed 𝑢0, and those which are not.

The variable mesh parameters mainly concern themselves with sensitivity

to velocity gradients. As 𝑢0 changes for each experiment, these must be altered

so that the adaptive algorithm does not under represent features of the flow

by excessive deletion of mesh nodes, or by over representing them by adding

so many nodes the simulation slows to a crawl. These variables are listed in

table 6.5, and do not vary linearly with 𝑢0, since the behaviour of the turbine

and the velocity gradients it induces do not vary linearly with 𝑢0.

153

6.3 Wind turbines

Name Symbol Value

minimum 𝑥 length of element 𝑥𝑒𝑙𝑒,𝑚𝑖𝑛 2.0 m

minimum 𝑦 length of element 𝑦𝑒𝑙𝑒,𝑚𝑖𝑛 2.0 m

minimum 𝑧 length of element 𝑧𝑒𝑙𝑒,𝑚𝑖𝑛 2.0 m

maximum 𝑥 length of element 𝑥𝑒𝑙𝑒,𝑚𝑎𝑥 20.0 m

maximum 𝑦 length of element 𝑦𝑒𝑙𝑒,𝑚𝑎𝑥 20.0 m

maximum 𝑧 length of element 𝑧𝑒𝑙𝑒,𝑚𝑎𝑥 20.0 m

initial divisions along 𝑥-axis 𝑁𝑥 140

initial divisions along 𝑦-axis 𝑁𝑦 40

initial divisions along 𝑧-axis 𝑁𝑧 40

Table 6.4: List of invariant settings for adaptive mesh

Name Symbol

error tolerance for 𝛿𝑢
𝛿𝑥𝑖

Δ𝑒𝑢

error tolerance for 𝛿𝑣
𝛿𝑥𝑖

Δ𝑒𝑣

error tolerance for 𝛿𝑤
𝛿𝑥𝑖

Δ𝑒𝑤

Table 6.5: List of variable adaptive parameters

𝑢0 (m/s) Δ𝑒𝑢 Δ𝑒𝑣 Δ𝑒𝑤 Δ𝑡 (s) 𝐿𝑇𝐼𝑀𝐸 (s)

5 0.05 0.05 0.05 0.15 600

9 0.1 0.2 0.2 0.09 600

10 0.15 0.2 0.2 0.08 900

12 0.25 0.1 0.1 0.05 900

12.5 0.2 0.2 0.2 0.05 600

15 0.2 0.2 0.2 0.05 500

17.5 0.225 0.2 0.2 0.04 429

20 0.3 0.25 0.25 0.035 375

22.5 0.35 0.275 0.275 0.03 333

25 0.4 0.3 0.3 0.025 300

Table 6.6: Inlet wind speed, error tolerances, time-step size and simulation

duration

154

6.3 Wind turbines

6.3.4. Vestas V52, with inlet turbulence

Overview

These set of simulations are identical to those in section 6.3.3, differing only

in the inlet conditions. To investigate the effect of incoming turbulent flow on

the modelled turbine, an algorithm was implemented to generate turbulence

at the inlet on the left.

Generating inlet turbulence

The inlet turbulence algorithm works on the same principle as the tip-generated

turbulence in section 4.3.6, ie. generating turbulence by accelerating the fluid

at each node within a defined volume in a Gaussian random manner, to kick-

start the LES turbulence modelling. This volume was defined as a thin narrow

strip near the entrance to the wind tunnel, as in figure 6.9.

Figure 6.9: The turbulent inlet of the wind tunnel

A node is considered in this strip if

0 < 𝑥𝑖 < 𝑛(Δ𝑥𝑒𝑙𝑒) (6.5)

where Δ𝑥𝑒𝑙𝑒 is the mean 𝑥-component length of an element within the turbine

volume – a good indicator of the general element dimensions. 𝑛 is a small

155

6.3 Wind turbines

positive number to modestly increase the length of the turbulent strip; 𝑛 = 5

gave the best results.

The turbulence algorithm was anisotropic, and so there were three separate

components, one for each axis: 𝑇𝑖𝑥, 𝑇𝑖𝑦, and 𝑇𝑖𝑧. From the Danish standard

DS472 (Wind Energy Handbook [16], pp21-22), we can define the 𝑦 and 𝑧

components as a function of 𝑇𝑖𝑥:

𝑇𝑖𝑦 = 0.8𝑇𝑖𝑥 (6.6)

𝑇𝑖𝑧 = 0.5𝑇𝑖𝑥 (6.7)

Furthermore, this specification allows us to define 𝑇𝑖𝑥 independently of the

freestream windspeed 𝑢0. Figure 6.10 shows the upper and lower limits of this

standard.

Figure 6.10: DS472 standard turbulence intensities for 𝑇𝑖𝑥 at 50 m height

To put our turbulence comfortably within acceptable levels, 𝑇𝑖𝑥 = 0.15

was chosen for all wind speeds.

In a similar fashion to equation (4.103), we calculate the changes in velocity

for node 𝑖 within the inlet region as

Δ𝑢𝑖𝑛𝑙𝑒𝑡,𝑖 = 𝑇𝑖𝑥𝐺𝑥(𝑡)𝑢0 (6.8)

156

6.4 Marine turbines

Δ𝑣𝑖𝑛𝑙𝑒𝑡,𝑖 = 𝑇𝑖𝑦 𝐺𝑦(𝑡)𝑢0 (6.9)

Δ𝑤𝑖𝑛𝑙𝑒𝑡,𝑖 = 𝑇𝑖𝑧 𝐺𝑧(𝑡)𝑢0 (6.10)

Where 𝐺𝑘(𝑡) are independent, normalised Gaussian random number gen-

erators, similar to before. To calculate the acceleration, we must calculate the

time the fluid takes to travel through turbulent inlet. This is

Δ𝑡𝑖𝑛𝑙𝑒𝑡 =
(Δ𝑥𝑒𝑙𝑒)

𝑢0

(6.11)

where 𝑢0 is a good approximation of the 𝑥-component of the velocity within

the inlet region.

The force-per-unit-volume applied at each node 𝑖 to create turbulence is

therefore

𝐹 𝑖𝑛𝑙𝑒𝑡,𝑖 =
(︂

𝜌

Δ𝑡𝑖𝑛𝑙𝑒𝑡

)︂
⎡⎢⎢⎢⎢⎢⎣

Δ𝑢𝑖𝑛𝑙𝑒𝑡,𝑖

Δ𝑣𝑖𝑛𝑙𝑒𝑡,𝑖

Δ𝑤𝑖𝑛𝑙𝑒𝑡,𝑖

⎤⎥⎥⎥⎥⎥⎦ (6.12)

6.4. Marine turbines

6.4.1. Choice of marine turbine

This was not difficult, since there are no open-water commercial axial-flow

marine current turbines in production to this date. However, Marine Current

Turbines Ltd. have produced a working prototype in Seaflow, which was in-

stalled 3 km from the coast of North Devon in England in 2003 (see press

release [48]). This turbine was chosen as the basis of the model, using a mix-

ture of the published technical details and assumptions from the wind turbine

model.

157

6.4 Marine turbines

Figure 6.11: The Seaflow turbine, with blades raised for maintainence (cour-

tesy of MCT website [1])

6.4.2. Defining turbine properties

Solidity and effective solidity

The process for defining 𝑏 is identical to that used for the turbine

1. We take a photograph of Seaflow close to ’head on’. In this case, the

best example to be found was figure 6.11.

2. Removing the background, clipping out the tower, and doing a little

perspective correction, we arrive at figure 6.12.

Figure 6.12: Perspective-corrected picture of Seaflow blades and hub

3. After that, the blades and hub were contrasted black, then a grey circle

fitted to the blade tips, as can be seen in figure 6.13.

158

6.4 Marine turbines

Figure 6.13: Seaflow blades and hub contrasted and encircled

4. Excluding the background the image is now two colours, and this pro-

duces the figure 6.14, the histogram of the indexed colours in the figure

6.13.

Figure 6.14: Seaflow image histogram

The smallest peak (left corner of the histogram) represents the number

of pixels that are the blades and hub. This put 𝐵 ≈ 0.1.

As far as the effective solidity is concerned, due to the lack of any other data

it was decided to keep this at a similar value for wind turbines, so 𝐵′ = 0.25.

Again, considering the hub completely solid to the flow, we have

𝛽𝐻 = 1.0 (6.13)

159

6.4 Marine turbines

Blade and hub cross-sectional geometry

By using figure 6.13 and published information, further estimates can be made:

∙ Total turbine radius defined in DTI Report [59] as 𝑅𝑇 = 5.5 m.

∙ From figure 6.13, calculated tip-width fraction of 𝑤 ≈ 0.6

∙ 𝑅𝐻 ≈ 1
10
𝑅𝑇 , from inspection of same figure.

∙ The tip radius was set to 𝑅𝑡𝑖𝑝 = 3
4
𝑅𝑇 , as before.

∙ 𝐿, the length of the turbine volume. For practical concerns – that the

turbine volume would capture some nodes, whilst allowing a reasonably-

large minimum size of element – this was set to 𝐿 = 5 m. This is ap-

proximately 5 times length of Seaflow (≈ 1 m).

Parameters from performance graphs: optimum power efficiency,
cut-in/cut-out speeds, etc.

Unlike wind turbines, detailed information on performance characteristics for

axial flow marine turbines is not readily and universally available, however we

can draw on data from published reports, as well as making decisions to based

upon what is known about the nature of marine current turbines.

∙ Determining the flow speed at peak efficiency, 𝑢0,𝑜𝑝𝑡. Data from Marine

Current Turbines Ltd. [48] states that Seaflow generates a maximum of

300 kW of power at in a tidal flow of 2.7 m/s; this speed will be 𝑢0,𝑜𝑝𝑡.

∙ The optimum power efficiency, 𝑐𝑃,𝑜𝑝𝑡. In the DTI report on Seaflow, this

is 𝑐𝑃,𝑜𝑝𝑡 = 0.40. To check this for the specified 𝑢0,𝑜𝑝𝑡 and maximum power

extracted of 300 kW, we will revisit the equation for power extracted via

axial flow turbines

𝑃𝑊𝑒𝑥 = 𝑐𝑃
1

2
𝜌𝜋𝑅2

𝑇𝑢
3
0 (6.14)

160

6.4 Marine turbines

Figure 6.15: Typical graph for a tidal current turbine showing flow speed

versus 𝑃𝑊𝑒𝑥 for a marine turbine (courtesy of Marine Current Turbines Ltd.)

If we plug in the optimum values for 𝑃𝑊𝑒𝑥, 𝑅𝑇 , 𝑢0, and assume the

density of the seawater is 1027 kg m−3 (this shall be justified later), then

𝑐𝑃 = 0.31, which is 20% less efficient than suggested; this is the value we

will use.

∙ 𝜔𝑇,𝑜𝑝𝑡, the optimum angular velocity. According to Fraenkel [30], blade-

tip speed needs to be limited to prevent cavitation occuring on the surface

of the turbine blades: he suggests a limit of 12−15 m/s. If we take 15 m/s

as our maximum, then with 𝑅𝑇 = 5.5 m that gives a maximum angular

velocity of 𝜔𝑇,𝑜𝑝𝑡 = 2.73 rad/s

This also gives a tip-speed ratio of 𝜆 = 2.02 : much lower than would be

expected for a horizontal axis wind turbine.

∙ The freestream flow speed at cutout, 𝑢0,𝑐𝑢𝑡𝑜𝑢𝑡. Since Seaflow does not

actually cut out at higher flow rates, we set this to an impossibly high

value, 𝑢0,𝑐𝑢𝑡𝑜𝑢𝑡 = 10 m/s.

∙ 𝑢𝑐𝑢𝑡𝑖𝑛 = 0, as Seaflow does not actually have a ’cut in’ mechanism such

as wind turbines have.

∙ From above, and assuming a hard-limited 300 kW maximum power out-

161

6.4 Marine turbines

put, 𝑐𝑃,𝑐𝑢𝑡𝑜𝑢𝑡 = 0.0061 (even though the cutout speed is never attained,

this is needed for the equations).

Fluid dynamic properties

As with the Vestas V52 model, these parameters were refined through exper-

imental runs, initially lifted directly from that model. The flow factor, inter-

estingly, had to be raised to 𝑓 = 2.5, to give 𝑐𝑃,𝑜𝑝𝑡 = 0.31 at 𝑢0 = 2.70 m/s. 𝑄

remained unaltered at 𝑄 = 0.65.

Turbulence

In the absence of any data to the contrary, the turbulence setting was taken

from that for the Vestas V52 model, and so 𝑇𝑖𝑜𝑝𝑡 = 0.15 at 𝑢0 = 𝑢0,𝑜𝑝𝑡.

Relaxation times

Given that the difference in Reynolds numbers in flow over wind turbines and

marine current turbines indicates a more turbulent environment for the latter,

the relaxation times were longer than those for the Vestas to ensure a degree

of stability in operation. Thus, 𝑡𝑟𝑒𝑙𝑎𝑥,𝑣𝑒𝑙 = 60 s, and 𝑡𝑟𝑒𝑙𝑎𝑥,𝛼 = 20 s .

6.4.3. Seaflow water channel with inlet turbulence

Overview

In a similar vein to the wind turbine simulations, a rectilinear channel was

used as the simulation doman. The aim was to create a rudimentary tidal

channel containing seawater (figure 6.17), with a Dirichlet inlet condition on

left similar to before and an open boundary to the right. Again, the four

remaining walls are frictionless.

Generating inlet boundary conditions

Turbulence Here, the same mechanism for generating turbulence was used

as in section 6.3.4. Again, the turbulence intensity was set with 𝑇𝑖𝑥 = 0.15.

162

6.4 Marine turbines

Name Symbol Value

Radius of turbine 𝑅𝑇 5.5 m

Hub radius 𝑅𝐻
1
10
𝑅𝑇

Hub local solidity 𝐵𝐻 1.0

Tip width fraction 𝑤 0.6

Tip radius 𝑅𝑡𝑖𝑝
3
4
𝑅𝑇

Turbine volume length 𝐿 5 m

Net solidity 𝐵 0.1

Optimum net effective solidity 𝐵′
𝑜𝑝𝑡 0.25

Flow factor 𝑓 2.5

Momentum extraction efficiency 𝑄 0.65

Optimum freestream speed 𝑢0,𝑜𝑝𝑡 2.7 m/s

Optimum blade angular velocity 𝜔𝑇,𝑜𝑝𝑡 2.73 rad/s

Optimum power coefficient 𝑐𝑝,𝑜𝑝𝑡 0.31

Freestream wind speed at turbine cutout 𝑢0,𝑐𝑢𝑡𝑜𝑢𝑡 10 m/s

Power coefficient just below cut-out windspeed 𝑐𝑃,𝑐𝑢𝑡𝑜𝑢𝑡 0.0061

𝑚𝑎𝑥(𝑢𝑖) at cut-in and cut-out 𝑢𝑐𝑢𝑡𝑖𝑛, 𝑢𝑐𝑢𝑡𝑜𝑢𝑡 0 m/s, 9.0 m/s

Tip-generated turbulence at 𝑢0 = 𝑢0,𝑜𝑝𝑡 𝑇𝑖𝑜𝑝𝑡 0.15

Turbine angular velocity relaxation time 𝑡𝑟𝑒𝑙𝑎𝑥,𝑣𝑒𝑙 20 s

Blade angle factor relaxation time 𝑡𝑟𝑒𝑙𝑎𝑥,𝛼 10 s

Table 6.7: List of physical properties of model of Seaflow

163

6.4 Marine turbines

Ramping boundary values For the wind tunnel simulations, the Dirich-

let inlet condition was simply set as 𝑢 = 𝑢0 and the simulation allowed to

progress. However, a similar approach could not be adopted for the marine

simulations,. As 𝑢 → 𝑢0,𝑜𝑝𝑡, the adaptive algorithm would ’blow up’, filling

the unstructured mesh with tiny elements and thereby lengthening run time

considerably. Setting 𝑢(𝑥) = 𝑢0 for every point in the mesh also produced this

result, so an alternative approach was needed.

It was decided that the best solution to this problem was ’ramped’ bound-

ary conditions. This involves linearly increasing 𝑢 at the boundary from 0 to

𝑢0, as can be seen in figure 6.16.

Figure 6.16: Ramped boundary condition for 𝑢

With 𝑢0 and 𝑡𝑟𝑎𝑚𝑝 the time to ramp up the boundary specified, a simple

algorithm was implemented to set 𝑢 at the boundary at time 𝑡:

𝑢𝑏𝑜𝑢𝑛𝑑(𝑡) =

⎧⎪⎨⎪⎩
(︁

𝑡
𝑡𝑟𝑎𝑚𝑝

)︁
𝑢0 𝑡 < 𝑡𝑟𝑎𝑚𝑝

𝑢0 𝑡 ≥ 𝑡𝑟𝑎𝑚𝑝

(6.15)

Through experiment it was found that for 𝑢0,𝑜𝑝𝑡 = 2.7 m/s, 𝑡𝑟𝑎𝑚𝑝,𝑜𝑝𝑡 =

3000 𝑠 gave good results. This gives

𝑢̇𝑏𝑜𝑢𝑛𝑑 = 0.0015 ms−2 (6.16)

At first glance, it might seem that prudence would suggest optimum re-

sults would be acheived by maintaining this gradient. However, as the error

164

6.4 Marine turbines

tolerances become smaller with 𝑢0, so would 𝑢̇𝑏𝑜𝑢𝑛𝑑 – this meant keeping 𝑡𝑟𝑎𝑚𝑝

constant with decreasing 𝑢0.

Water channel dimensions

These had to be close to what would be expected in realistic conditions. Anec-

dotal evidence from the length of ship propeller wakes, suggested that wake

recovery in axial flow marine turbines may be considerably longer than 20 rotor

diameters – so as a precaution the tunnel length was set to considerable longer

than would have adequate for a wind turbine of similar size. As to width,

this was set to what could be called a plausible minimum for a tidal strait,

certainly enough wide enough that shore effects could be ignored. Lastly, the

depth of the channel was set to that of the Seaflow test site near Foreland

Point in North Dorset, England as mentioned in the DTI report.

This gives the dimensions of the channel as

𝑉𝑡𝑢𝑛𝑛𝑒𝑙 = 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 800 m× 200 m× 40 m (6.17)

Figure 6.17: The Seaflow simulation domain

Turbine positioning

Again, the turbine was positioned in the centre of the incoming flow towards

the inlet with its axis parallel to it. It was set at half-depth, giving its position

as

165

6.4 Marine turbines

𝑥𝑇 =

⎡⎢⎢⎢⎢⎢⎣
100 m

100 m

20 m

⎤⎥⎥⎥⎥⎥⎦ (6.18)

Fluid properties

The seawater was assumed incompressible, and with a temperature of 15𝑜 C

under normal conditions this gave the fluid properties as presented in table

6.8.

Name Symbol Value

Density 𝜌 1027 kg m−3

Dynamic viscosity 𝜇 1.50× 10−3Pa s

Table 6.8: Fluid properties of simulation seawater

Varying inlet conditions and adaptive mesh configuration

The final (or target) inlet water speed was varied; these water speeds are shown

in table 6.9.

𝑢0 (m/s)

0.5

1.0

1.5

2.0

2.5

2.7

3.0

4.0

5.0

Table 6.9: List of inlet water speeds

166

6.4 Marine turbines

The parameters below are invariant with 𝑢0, and so did not change between

simulation runs.

Name Symbol Value

minimum 𝑥 length of element 𝑥𝑒𝑙𝑒,𝑚𝑖𝑛 1 m

minimum 𝑦 length of element 𝑦𝑒𝑙𝑒,𝑚𝑖𝑛 1 m

minimum 𝑧 length of element 𝑧𝑒𝑙𝑒,𝑚𝑖𝑛 1 m

maximum 𝑥 length of element 𝑥𝑒𝑙𝑒,𝑚𝑎𝑥 20.0 m

maximum 𝑦 length of element 𝑦𝑒𝑙𝑒,𝑚𝑎𝑥 20.0 m

maximum 𝑧 length of element 𝑧𝑒𝑙𝑒,𝑚𝑎𝑥 20.0 m

initial divisions along 𝑥-axis 𝑁𝑥 100

initial divisions along 𝑦-axis 𝑁𝑦 20

initial divisions along 𝑧-axis 𝑁𝑧 10

Table 6.10: List of invariant settings for marine adaptive mesh

As before, the error tolerances were adjusted for each value of 𝑢0 to give

an accurate representation of the flow without adversely affecting simulation

speed via oversensitive mesh adaption. These can be seen in table 6.11 .

6.4.4. Seaflow with bottom drag

Overview

This is a modification of the previous experiment in section 6.4.3 to simulate

a more realistic environment, in so much that bottom drag is introduced, with

consequent velocity profile. Fluidity does not currently have 3D free surface

modelling implemented in parallel, so this was excluded. Instead, the rigid

lid was extended upwards to 80 m to ameliorate the effects of the artificially-

restricted channel surface, which would accelerate the flow around the turbine.

An inlet velocity with a peak of 𝑢0 = 4 m/s was chosen.

Generating inlet boundary conditions

The Dirichlet inlet conditions were ramped as before, but with a vertical scal-

ing factor in addition to the time scaling factor. One approach may be to

167

6.4 Marine turbines

𝑢0 (m/s) Δ𝑒𝑢 Δ𝑒𝑣 Δ𝑒𝑤 Δ𝑡 (s) 𝐿𝑇𝐼𝑀𝐸 (s)

0.5 0.01 0.007 0.007 5.4 6000

1.0 0.027 0.0065 0.0065 2.7 6000

1.5 0.03 0.007 0.007 1.8 6000

2.0 0.035 0.007 0.007 1.35 6000

2.5 0.04 0.007 0.007 1.08 6000

2.7 0.045 0.007 0.007 1.0 6000

3.0 0.05 0.0085 0.0085 0.9 5500

4.0 0.07 0.0085 0.0085 0.675 5000

5.0 0.08 0.015 0.0015 0.54 4500

Table 6.11: Inlet water speed, error tolerances, time-step size and simulation

duration

model the sea bottom with a no-slip condition, but this would lead to a steep

velocity gradient which, in turn, would lead to Fluidity’s adaptive algorithm

adding excessive resolution to the mesh at the bottom. Thus a slip condition

is introduced with friction specified by the absorption coefficient at each node,

and the appropriate velocity profile at the inlet specified.

To find this, according to Drago [23], the velocity profile can be stated as

a function of height from the sea bed

𝑢0(𝑧) =
𝑢𝜏

𝐾
ln
(︂
𝑧

𝑧𝑅

)︂
(6.19)

Where 𝐾 = 0.41 is the universal von Karman constant, 𝑢𝜏 is the frictional

velocity and 𝑧𝑅 is the seabed roughness. We can take 𝑧𝑅 = 0.4 m, a reason-

able estimate for a tidal strait [77]. However, since our boundary conditions

are time-dependent due to the ramp time in (6.15), the boundary condition

becomes

𝑢𝑏𝑜𝑢𝑛𝑑(𝑧, 𝑡) =

⎧⎪⎨⎪⎩
(︁

𝑡
𝑡𝑟𝑎𝑚𝑝

)︁
𝑢0(𝑧) 𝑡 < 𝑡𝑟𝑎𝑚𝑝

𝑢0(𝑧) 𝑡 ≥ 𝑡𝑟𝑎𝑚𝑝

(6.20)

This leaves the definition of the frictional velocity; if we say that 𝑧𝑆 is the

168

6.4 Marine turbines

height of the surface then at time 𝑡

𝑢𝑆(𝑡) =
𝑢𝜏 (𝑡)

𝐾
ln
(︂
𝑧𝑆

𝑧𝑅

)︂
(6.21)

This means that if we can define 𝑢𝑆(𝑡) = 𝑢0(𝑧𝑆, 𝑡), then

𝑢𝜏 (𝑡) =
𝐾𝑢0(𝑧𝑆, 𝑡)

ln
(︁

𝑧𝑆

𝑧𝑅

)︁ (6.22)

And so the time-dependent inlet vertical velocity profile is specified.

Turbulence at the inlet

This was generated in an identical manner to before, with the turbulent inten-

sities remaining the same. However, since 𝑢0 has becomes a function of height,

this changes the force acting on the fluid due to turbulence in equations (6.8),

(6.9) and (6.8). These now become

Δ𝑢𝑖𝑛𝑙𝑒𝑡,𝑖 = 𝑇𝑖𝑥𝐺𝑥(𝑡)𝑢0(𝑧𝑖, 𝑡) (6.23)

Δ𝑣𝑖𝑛𝑙𝑒𝑡,𝑖 = 𝑇𝑖𝑦 𝐺𝑦(𝑡)𝑢0(𝑧𝑖, 𝑡) (6.24)

Δ𝑤𝑖𝑛𝑙𝑒𝑡,𝑖 = 𝑇𝑖𝑧 𝐺𝑧(𝑡)𝑢0(𝑧𝑖, 𝑡) (6.25)

Furthermore Δ𝑡𝑖𝑛𝑙𝑒𝑡 in (6.11) must be redefined as

Δ𝑡𝑖𝑛𝑙𝑒𝑡 =
(Δ𝑥𝑒𝑙𝑒)

𝑢0(𝑧𝑖, 𝑡)
(6.26)

Thus the force-per-unit-volume can be defined for the bottom drag velocity

profile, as per equation (6.12).

Bottom drag

The drag coefficient is needed to effect bottom roughness, and must match the

inlet velocity profile given. This is specified within Fluidity as

169

6.4 Marine turbines

𝐶𝐷 =

⎡⎣ 𝐾

𝑙𝑛
(︁

𝑧𝑅+𝑧𝑁

𝑧𝑅

)︁
⎤⎦2

(6.27)

Where 𝑧𝑁 is the distance from the seabed to the closest element nodes

just above it; in the marine turbine simulations the minimum element size was

2.5 m and so a good estimate of this would be 𝑧𝑁 = 2.5 m. This gives a drag

co-efficient of 𝐶𝐷 ≈ 0.043.

Finally, if we assume a linear bottom friction law [33], we can write the

drag force-per-unit-volume vector as

𝐹 𝑑𝑟𝑎𝑔 = −𝐶𝐷

(︂
𝜌

𝑡𝑟𝑒𝑙𝑎𝑥

)︂
⎡⎢⎢⎢⎢⎢⎣
𝑢

𝑣

0

⎤⎥⎥⎥⎥⎥⎦ (6.28)

Where 𝑡𝑟𝑒𝑙𝑎𝑥 is the time over which the drag is applied. This can be put

into Fluidity as momentum absorption terms, which means 𝑡𝑟𝑒𝑙𝑎𝑥 becomes an

automatically calculated relaxation period.

Adaptive mesh settings

The bulk of the settings were carried over from the previous rigid lid case for

𝑢 = 4.0 m/s in section 6.4.3, however several of the adaptive settings had to

be modified to cope with the altered flow conditions due to the bottom drag:

these alterations are listed below in table 6.12.

The most significant changes are the increased minimum element dimen-

sions, and the 𝑧-component of the error tolerance in the velocity gradient.

These were made to ensure that whilst the simulation would not concentrate

an undue number of nodes near the sea floor, it would maintain enough to

resolve the non-linear velocity gradient accurately.

170

6.4 Marine turbines

Name Symbol Value

minimum 𝑥 length of element 𝑥𝑒𝑙𝑒,𝑚𝑖𝑛 2.0 m

minimum 𝑦 length of element 𝑦𝑒𝑙𝑒,𝑚𝑖𝑛 2.5 m

minimum 𝑧 length of element 𝑧𝑒𝑙𝑒,𝑚𝑖𝑛 2.5 m

maximum 𝑥 length of element 𝑥𝑒𝑙𝑒,𝑚𝑎𝑥 100.0 m

maximum 𝑦 length of element 𝑦𝑒𝑙𝑒,𝑚𝑎𝑥 50.0 m

maximum 𝑧 length of element 𝑧𝑒𝑙𝑒,𝑚𝑎𝑥 30.0 m

initial divisions along 𝑥-axis 𝑁𝑥 100

initial divisions along 𝑦-axis 𝑁𝑦 20

initial divisions along 𝑧-axis 𝑁𝑧 20

error metric in 𝑥-direction Δ𝑒𝑢 0.08

error metric in 𝑦-direction Δ𝑒𝑢 0.08

error metric in 𝑧-direction Δ𝑒𝑢 0.09

simulation duration (s) 𝐿𝑇𝐼𝑀𝐸 6000

Table 6.12: List of invariant settings for bottom drag simulation adaptive mesh

171

Chapter 7

Results and analysis

7.1. Data formats

7.1.1. Unstructured mesh files

Fluidity makes periodic dumps of the unstructured finite element mesh repre-

senting the flow, after an interval specified by the 𝑇𝐼𝑀𝐷𝑈𝑀 parameter. This

contains information on the fluid field at each mesh node; the fluid properties

are listed in table 7.1

Name

Node coordinate 𝑥

Velocity 𝑢

Pressure 𝑃

Turbine presence

CPU ID

Table 7.1: List of mesh properties

These dump files are in written in Fluidity’s propietary format, on a per-

processor basis. Fortunately, Imperial College provides tools to convert and

merge these into a VTU file, a data format for unstructured meshes and com-

patible with the Visualisation Toolkit (VTK) [4]. The VTU format allows a

variety of VTK-aware software to load these files for data analysis and visual-

isation purposes.

172

7.2 Analysis software

7.1.2. Time-dependent turbine performance data

In addition to the fluid state, the turbine module would write to file various

turbine performance-related statistics for each turbine at each simulation time-

step, ie. every Δ𝑡 seconds. Separating out data for each turbine would allow

the performance of each individual turbine to be evaluated in wind farm or ma-

rine farm simulations. The data was in the common spreadsheet CSV format,

essentially a text file with comma-separated values; this would allow conve-

nient loading and graphing in spreadsheets applications such as Microsoft’s

Excel or OpenOffice’s Calc program. The list of variables is shown in table

7.2.

Name

𝑡, current simulation time

𝑘, turbine number

𝑁𝑘, number of nodes in turbine 𝑘

𝑢𝑘, relaxed form

𝑢𝐻,𝑘, relaxed form

𝑚𝑎𝑥(𝑢)𝑘, maximum value of 𝑢, relaxed form

𝛼𝑘

𝜔𝐹𝐿,𝑘

𝜔𝑇,𝑘

𝜔𝑇,𝑚𝑎𝑥,𝑘

𝐵′
𝑘

𝜌 mean fluid density within turbine (future compressible use)

𝑃𝑊𝑒𝑥,𝑘

𝑢𝑘, instantaneous form

max(𝑢)𝑘, instantaneous form

Table 7.2: List of turbine performance variables

173

7.3 Techniques for analysis

7.2. Analysis software

Bespoke Numerical Python (NumPy)

One of the main problems with unstructured mesh data, is manipulating into

a regular form whereupon analysis can be performed. This is compounded

when the meshes are time-dependent, since comparison between two time-

steps necessarily involves interpolating both individually to identical meshes:

usually these are regular grids (more on these techniques in 7.3.1).

Python is an easy-to-use scripting language with a freely available inter-

preter. It has support for VTK , and extensive mathematical tools provided

through its NumPy library. This made it an ideal choice as a processing tool

for the fluid mesh. Specifically, NumPy programs written formed the basis of

all the grid-interpolation and complex time-dependent analysis in this section.

Matlab

Since Matlab’s duties for data interpolation had been taken over by the Python

programs, it was relegated to doing batch processing of:

1. Contour plots for the Python programs’ output

2. Statistical and time-based plots from global variables

OpenOffice Calc

While this spreadsheet program was not in itself used to generate plots, it was

invaluable as a tool to quickly inspect turbine performance variables, ie. ’test’

plots. The CSV file is a universal format generated by the model is readily

understood by Calc and a variety spreadsheet packages.

Paraview

Paraview is free visualisation software from Kitware, which allows slices through

3D sets of data to be generated in real time, and viewed in a variety of ways.

Paraview will be used to demonstrate instantaneous properties of the flow in

the forthcoming sections.

174

7.3 Techniques for analysis

7.3. Techniques for analysis

7.3.1. Preface

Mesh interpolation

As mentioned before, Fluidity stores fluid field information in an unstructured

finite element mesh, and this presents several problems, which require mesh

interpolation to answer them. For fluid properties that required full-volume

analysis, a 3D Cartesian grid would be specified as

𝐷𝑥 ×𝐷𝑦 ×𝐷𝑧 (7.1)

Where 𝐷𝑥, 𝐷𝑦 and 𝐷𝑧 would be the number of subdivisions along the 𝑥,

𝑦, and 𝑧 axes respectively.

Figure 7.1: Interpolation from a 2D irregular mesh to a regular 2D Cartesian

grid

The VTK extensions for Python allow for rapid linear interpolation of

VTU meshes within Python programs, and so regular gridded datasets could

be produced very quickly. Using Python and VTK to interpolate the data

instead of outputting sparse data to Matlab had two benefits:

1. Speed. While more complex to use, Python is several orders of magni-

tude faster than Matlab at data interpolation.

2. Accuracy. Python used with VTK allows linear interpolation within

elements (see figure 7.2), rather than sparse data interpolation in Matlab,

which does not support VTU files.

175

7.3 Techniques for analysis

Essentially, once 𝐷𝑥×𝐷𝑦 ×𝐷𝑧 was specified, this would produced a file of

interpolated values for a particular VTU file.

Standard deviations and means

Since all the flows dealt with are turbulent and thus transient, it is more

meaningful to look at statistical properties of the flow, rather than those at

any one point in time. We can do this once a series gridded data files had been

produced; statistics about the data can be produced using custom-written

Python programs.

Suppose we have gridded data files {𝐺𝑡𝑛 , 𝐺𝑡𝑛+1 , ..., 𝐺𝑡𝑚} where 𝑡𝑛 is the

𝑛𝑡ℎ time-step, and so for 𝑡𝑚. If there are 𝑀 time-steps, then we can write

𝑛 = 𝑚 − (𝑀 − 1). If we think of 𝐺 containing a set of properties for each

of 𝑁 points, denoted 𝑞
𝑖

for point 𝑖 where 1 ≤ 𝑖 ≤ 𝑁 , then we can write the

temporal average of an individual property as

𝑞𝑖 =
1

𝑀

𝑗=𝑚∑︁
𝑗=𝑛

𝑞𝑖,𝑗 (7.2)

For each point 𝑖, where 𝑞𝑖,𝑗 is property 𝑞𝑖 at the 𝑗𝑡ℎ time-step. If we then

define the mean of the square as

𝑞2
𝑖 =

1

𝑀

𝑗=𝑚∑︁
𝑗=𝑛

𝑞2
𝑖,𝑗 (7.3)

Then we can define 𝜎𝑞,𝑖 the standard deviation of 𝑞𝑖 as

𝜎𝑞,𝑖 =
√︁

(𝑞2
𝑖 − 𝑞𝑖2) (7.4)

Typically, we only look at the flow when it is fully developed, so this would

be when the wake behind the turbine has become relatively stable. Moreover,

𝑀 has to be quite large for the calculated values to be reliable.

7.3.2. Velocity deficit

This is essentially a measure of flow recovery downstream of the turbine in the

wake. If we have our regular gridded data of 𝑁 points, we can define this for

176

7.3 Techniques for analysis

point 𝑖 as

𝑑𝑖 = 1−
(︂
𝑢𝑖

𝑢0

)︂
(7.5)

Where 𝑢0 is the final value of 𝑢 at the inlet boundary.

7.3.3. Turbulence intensity

As turbulence intensity is essentially the normalised standard deviation of the

speed of the flow, this is written as

𝑇𝑖𝑖 =
𝜎𝑢,𝑖

𝑢0

(7.6)

Which is the turbulence intensity at the 𝑖𝑡ℎ point.

7.3.4. Circulation

Circulation, as used here, can be thought of as a measure of the rotation of

the wake. This is defined as the path integral over a closed curve 𝐶

Γ =
∮︁

𝐶
𝑢 · 𝑑𝑆 (7.7)

Where 𝑑𝑆 is the unit vector pointing along the loop. For the purposes of

measuring circulation downstream of turbine, the loop shall be considered as

a circle centered on the turbine’s axis, positioned at 𝑥𝐶 = (𝑥𝐶 , 𝑦𝑇 , 𝑧𝑇) with a

radius of 𝑅𝐶 – see figure 7.3.

Numerically, this breaks down into the 𝑁 points around the circumference,

and can be represented as

Γ =
2𝜋

𝑁

𝑁−1∑︁
𝑖=0

𝑣𝑖

(︂
𝑧𝑖 − 𝑧𝑇

𝑅𝐶

)︂
− 𝑤𝑖

(︂
𝑦𝑖 − 𝑦𝑇

𝑅𝐶

)︂
(7.8)

where 𝑥𝑖 and 𝑢𝑖 represent the position of points and the fluid velocity at

points on the loop. 𝑢𝑖 is found via mesh interpolation, while the point position

is specified thus

𝑥𝑖 = 𝑥𝐶 (7.9)

177

7.3 Techniques for analysis

Figure 7.2: Linear interpolation of property 𝑞 in a 2D triangular element con-

structed from elements 𝑖, 𝑗 and 𝑘.

Figure 7.3: Circulation loop downstream of turbine

178

7.3 Techniques for analysis

𝑦𝑖 = 𝑠𝑖𝑛(𝜃𝑖) + 𝑦𝑇 (7.10)

𝑧𝑖 = 𝑐𝑜𝑠(𝜃𝑖) + 𝑧𝑇 (7.11)

where 𝜃𝑖 = 2𝜋
(︁

𝑖
𝑁

)︁
.

7.3.5. Turbine performance

There are four variables that are of interest for each turbine

∙ Blade parameter 𝛼

∙ Turbine angular velocity 𝜔𝑇

∙ Extracted power 𝑃𝑊𝑒𝑥

∙ Effective solidity 𝐵′

As the flow in all simulation cases is turbulent, these variables will almost

always be unsteady, since they are a function of the fluid velocity field. For

power efficiency analysis and the like, this means long-term averages must be

used.

If we consider time-step 𝑛 as when the wake has fully developed and max-

imum power output has been achieved, and 𝑚 the final time-step, then for

turbine property 𝑞𝑖:

𝑞𝑖 =
1

𝑀

𝑗=𝑚∑︁
𝑗=𝑛

𝑞𝑖,𝑗 (7.12)

where 𝑀 = (𝑚+ 1)− 𝑛 is as before.

Moreover, for each different inlet value of 𝑢0 the power efficiency shall be

calculated as

𝑐𝑃 =
1
2
𝜌𝜋𝑅2

𝑇𝑢
3
0

𝑃𝑊 𝑒𝑥

(7.13)

179

7.4 Results for Vestas V52 wind turbine

7.4. Results for Vestas V52 wind turbine

7.4.1. Vestas V52 with inlet turbulence at 𝑢0 = 12m/s

For any time-averaged values, the interval over which they are averaged must

be chosen with care. The simulation has a spin-up period in which the turbine

reaches its relatively stable operating conditions, and the wake has fully de-

veloped. This was estimated through inspection of the turbine variables over

time, at which point parameters such as 𝑃𝑊𝑒𝑥 have largely stablised, and by

visual inspection of planar velocity slices within applications such as Paraview.

Figure 7.4: Evolution of 𝛼, 𝐵′ and normalised 𝑃𝑊𝑒𝑥 over time

Figure 7.4 shows a significant drop in power at 𝑡 = 500 𝑠 after the initial

turbine spin-up, which then stablises at approximately 𝑃𝑊𝑒𝑥 = 𝑃𝑊𝑒𝑥,𝑜𝑝𝑡. This

was perhaps due to a recirculation bubble – a vortex – that occured at approx-

imately 2-3 turbine diameters downwind (denoted ‘𝐷’) of the turbine, see fig.

7.5. This was later almost completely dispersed, and after 13-14 minutes was

just over half of what it was, as can been in fig. 7.6.

The counteracting action of 𝛼 can be seen; of particular note is not only

180

7.4 Results for Vestas V52 wind turbine

Figure 7.5: Planar slice showing 𝑢/𝑢0 at 𝑡 = 500 s. The turbine volume is

represented by the black rectangle. The strongest recirculation is 22%, 2 to 3

diameters downstream.

Figure 7.6: Planar slice showing 𝑢/𝑢0 at 𝑡 = 815 s. The recirculation has now

signficantly weakened, at 12%. Note the wake is more turbulent.

that 𝛼 decrease when 𝑃𝑊𝑒𝑥 exceeds 𝑃𝑊𝑒𝑥,𝑜𝑝𝑡, but also when 𝑑(𝑃𝑊𝑒𝑥)
𝑑𝑡

becomes

too large: this is a consequence of equation (4.63) specifying (𝜔̇𝑇)𝑚𝑎𝑥 in section

4.3.5.

It can also be seen that there is a corresponding drop in effective solidity

with power; conversely, this increases the flow through the turbine, which leads

to a power increase. From figure 7.4 we can see that the period after 600 s is

181

7.4 Results for Vestas V52 wind turbine

dynamically stable, so all time-averaged values were calculated over the period

600 s < 𝑡 < 900 s; an interval of 5 minutes. We shall denote this interval 𝑡𝑎𝑣.

Horizontal slices were then taken through domain from the inlet to the

outlet, over the period 𝑡𝑎𝑣, at 𝑧 = 200 m so they would pass through the

turbine. A time-averaged velocity deficit was calculated; fig. 7.7 shows the

contour plot. From this, we can see the 𝑢 = 0 contours that sit either side

of the turbine, indicating that the external layers of fluid are moving faster

than 𝑢0; it also shows a stagnant region about 2− 3𝐷 (diameters) downwind

of the turbine. There is a non-linear wake recovery (ie. 𝑑𝑢
𝑑𝑥

is not constant), as

seen through the non-linear separation of the contours in the wake, with near

total wake recovery (𝑢 > 0.80𝑢0) occuring at approximately 19𝐷 downstream.

Furthermore, the wake expansion is clearly limited at 𝑥 ≈ 8𝐷; this is suspected

to be due to the restrictive effect of the boundary walls.

Another view of this would the normalised cross-sectional velocity profile,

as seen in fig. 7.8, which gives greater detail in radial directions. This profile

has been averaged over both 𝑡𝑎𝑣 as well as orbitally – −𝑅𝑇 < 𝑟 < 0 represents

the average over an arc a angle of 𝜋 where 𝑦 < 0, whereas 0 > 𝑟 > 𝑅𝑇 is the

average for a similar arc where 𝑦 > 0.

In this figure we can see that upstream at 𝑥′ = −5𝐷 (where 𝑥′ = 𝑥− 𝑥𝑇)

there is little disturbance to the flow, however at 𝑥′ = −1𝐷, approximately 50

metres upstream, the pressure wave created by the turbine is already slowing

the fluid. At 𝑥′ = 0, immediately downwind of the turbine, the peak moment

extraction occurs at 𝑟 ≈ ±3
4
𝑅𝑇 ; at larger 𝑟, the tip-loss effect is clearly evident.

For 𝑅𝑇 ≤ |𝑟| ≤ 2𝑅𝑇 at 1𝐷 ≤ 𝑥′ ≤ 3𝐷 acceleration occurs just past the tips

of the turbine, which matches the bulge in the vertical profiles for flat plate

laminar flow in figure 2.4 (b). At greater values of 𝑥′ this effect diminshes, and

the profile smooths out into a ’U’ then shallow ’V’ shape, showing the minor

recirculation (≈ 10%) occuring at 𝑥′ = 2− 3𝐷; by the time the wake is more

than 15𝐷 long, it has returned to almost 80% of its freestream value.

The wake turbulence structure in figure 7.9, clearly shows an outer layer

of high turbulence which decays sharply along two parallel ridges, and a less

182

7.4 Results for Vestas V52 wind turbine

Figure 7.7: Planar contour plot of time-averaged velocity deficit. The contour

line ‘0’ denotes full wake recovery.

Figure 7.8: Spatially and time-averaged 𝑢 profiles for varying distances up-

stream and downstream. The slight asymmetry at D=1 suggests 𝑡𝑎𝑣 may need

to be longer to give a symmetric profile.

183

7.4 Results for Vestas V52 wind turbine

Figure 7.9: Planar contour plot of turbulence intensity

turbulent zone centred around 𝑟 = 0 which terminates in a highly turbulent

patch at about 𝑥′ = 2𝐷. This is approximately where the wake recirculation is.

It should be noted, however, that while the maximum turbulence intensity 𝑇𝑖,

is almost the same as that specified for the turbine, with 𝑇𝑖𝑜𝑝𝑡 = 0.16, this does

not include sub-grid turbulence. The sub-grid turbulence of the LES model is

being generated, but is not available as output within Fluidity, although its

effect can still be seen within the flow structure.

7.4.2. Vestas V52 with inlet turbulence: overview of perfor-
mance

As 𝑢0 was varied for each simulation run, 𝑡𝑎𝑣 was respecified as

𝑡𝑎𝑣 =
[︂
𝐿𝑇𝐼𝑀𝐸

2
, 𝐿𝑇𝐼𝑀𝐸

]︂
(7.14)

For inlet conditions other than 𝑢0 = {7.5 m/s, 10 m/s, 12 m/s}. This was

sufficient criteria to ensure any mean values taken over 𝑡𝑎𝑣 were representative.

The performance plot in figure 7.10 shows a sharp jump to nearly the

quoted maximum efficiency of 𝑐𝑃 = 0.4, with a near quadratic drop-off for

higher wind speeds, until a complete cut-out at 𝑢0 = 25 m/s. The drop-off is

due to the hard-limiting of the power output of the turbine to 850 kW through

the blade factor 𝛼. Figure 7.11 shows the relationship between 𝛼 and 𝑢0

through this power throttling: time-averaged power output remains close to

𝑃𝑊𝑒𝑥,𝑜𝑝𝑡 even at higher windspeeds.

184

7.4 Results for Vestas V52 wind turbine

Figure 7.10: Performance curve for V52 with inlet turbulence, peaking at

𝑢0 = 12 m/s. Official figures give 𝑐𝑃 = 0.4 at 𝑢0 = 11.78 m/s.

Figure 7.11: Plot of blade factor 𝛼 versus 𝑃𝑊𝑒𝑥/𝑃𝑊𝑜𝑝𝑡. The numbers next to

the points represent 𝑢0 in m/s.

185

7.4 Results for Vestas V52 wind turbine

Figure 7.12: Plot of 𝐷 versus circulation Γ for varying 𝑢0

Looking at the circulation in figure 7.12, we can see that for all wind speeds

Γ peaks immediately or almost immediately down wind of the turbine, and

decreases almost quadratically with distance downstream. We can also see that

Γ decreases with increasing 𝑢0, after peaking at 𝑢0 = 10− 12 m/s. Conversely,

circulation is very small at 𝑢0 = 4 m/s and 𝑢0 = 25 m/s.

7.4.3. Vestas V52 with inlet turbulence: comparisions between
wind speeds

Inlet windspeed of 𝑢0 = 7.5m/s

From the fig. 7.13, we can see that the turbine power output is about 1
5
𝑃𝑊𝑒𝑥,𝑜𝑝𝑡

whilst the dynamic solidity 𝐵′ quickly progresses to 𝐵′ ≈ 0.20. We can also

see that 𝛼 = 1 for the most part, since no limiting is required at such low wind

speeds. 𝑡𝑎𝑣 was taken as between 600 and 900 𝑠.

The velocity deficit contour plot in figure 7.14 shows that a similar amount

of recirculation occurs to 𝑢0 = 12 m/s, with max(𝑑) ≈ 1.25, and that the wake

shows a similar length for recovery, which can be more clearly seen in the

186

7.4 Results for Vestas V52 wind turbine

Figure 7.13: 𝑢0 = 7.5 m/s : evolution of 𝛼, 𝐵′ and normalised 𝑃𝑊𝑒𝑥 over time

Figure 7.14: 𝑢0 = 7.5 m/s : planar contour plot of time-averaged velocity

deficit. The contour line ‘0’ denotes full wake recovery.

velocity profile plots in figure 7.15 – for 𝐷 ≈ 15 for 80% wake recovery. The

visible turbulence is at similar levels to 𝑢0 = 12 m/s, as can been seen in figure

7.16, approximately 𝑇𝑖𝑥,𝑜𝑝𝑡 = 0.15.

187

7.4 Results for Vestas V52 wind turbine

Figure 7.15: 𝑢0 = 7.5 m/s : spatially and time-averaged 𝑢 profiles for varying

distances upstream and downstream

Figure 7.16: 𝑢0 = 7.5 m/s : planar contour plot of turbulence intensity

188

7.4 Results for Vestas V52 wind turbine

Inlet windspeed of 𝑢0 = 20m/s

In figure 7.17, the turbine progresses to a stable maximum power output much

more quickly than for 𝑢0 = 12 m/s – 100 s as opposed to 600 s – and that

the blade factor 𝛼 starts to reduce prior to 𝑃𝑊𝑒𝑥 > 𝑃𝑊𝑒𝑥,𝑜𝑝𝑡, which, as in

the 12 m/s case ensures that max(𝑃𝑊𝑒𝑥) ≤ 1.2𝑃𝑊𝑒𝑥,𝑜𝑝𝑡. 𝛼 is now continually

varying, and manages to keep 𝑃𝑊𝑒𝑥 within 10% of the optimum power, despite

the turbulent flow.

Figure 7.17: 𝑢0 = 20 m/s : evolution of 𝛼, 𝐵′ and normalised 𝑃𝑊𝑒𝑥 over time

The velocity deficit plot in fig. 7.18 shows that max(𝑑) ≈ 0.6, while the

wake is longer than at either 7.5 m/s or 12 m/s – reaching approximately 0.75𝑢0

at 𝑥 = 1400 m.

The velocity profiles in fig. 7.19 shows this a little more clearly. What can

also be noticed is the more pronounced effect of the hub at 𝑥′ = 0 (just down-

wind of the turbine). Furthermore, the profiles seem to be more symmetrical

than at 𝑢0 = 12 m/s, which could be down to the increased viscous action due

to turbulence.

189

7.4 Results for Vestas V52 wind turbine

Figure 7.18: 𝑢0 = 20 m/s : planar contour plot of time-averaged velocity

deficit. The contour line ‘0’ denotes full wake recovery.

Figure 7.19: 𝑢0 = 20 m/s : spatially and time-averaged 𝑢 profiles for varying

distances upstream and downstream

190

7.4 Results for Vestas V52 wind turbine

Figure 7.20: 𝑢0 = 20 m/s : planar contour plot of turbulence intensity

The turbulent contours plot in fig. 7.20 however sees the turbulence inten-

sity peak at half the 12 m/s case, with max(𝑇𝑖) ≈ 0.07. This could be down

to one of several things:

1. Most of the turbulence within the model is sub-grid, and so cannot be

directly measured.

2. The turbulence generating algorithm is ineffective at higher windspeeds.

3. The sampling period of 𝑡𝑎𝑣 =
[︁

𝐿𝑇𝐼𝑀𝐸
2

, 𝐿𝑇𝐼𝑀𝐸
]︁

is only adequate for

lower values of 𝑢0.

These points shall be discussed in chapter 8.

7.4.4. Vestas V52: without turbulent inlet conditions

Overall performance

From fig. 7.21 we can see that 𝑐𝑃 at 𝑢0,𝑜𝑝𝑡 peaks slightly lower than the

turbulent inlet case at 𝑐𝑃 ≈ 0.365. Below this, the power output is roughly

similar to the turbulent inlet simulations. This is also the case above 𝑢0,𝑜𝑝𝑡

– to be expected, due to the hard limiting of the power output to 𝑃𝑊𝑒𝑥,𝑜𝑝𝑡.

via 𝛼. At lower wind speeds, excepting the peak at 𝑢0 = 10 m/s, the overall

efficiency is less than the turbulent case as shown in fig. 7.10.

191

7.4 Results for Vestas V52 wind turbine

Figure 7.21: Performance curve for V52 without inlet turbulence, peaking at

𝑢0 = 12 m/s with 𝑐𝑃 ≈ 0.36; lower than the turbulent inlet case

Inlet condition 𝑢0 = 12,m/s

From fig. 7.22 it is clear that the power fluctuates less than the turbulent

inlet case. The velocity profile and velocity deficit plots in figs. 7.23 and 7.25

respectively show that despite 𝑐𝑃 being higher, the peak velocity deficit and

wake recovery remain almost the same.

Inlet condition 𝑢0 = 20,m/s

Comparing the non-turbulent inlet power output fig. 7.26 with fig. 7.17 shows

a smaller variation in 𝑃𝑊𝑒𝑥. The velocity deficit in fig. 7.27 is almost identical

to the turbulent inlet case shown in fig. 7.18; contrasting the two velocity

profile cases (fig. 7.19 and fig. 7.28) also shows little change.

Finally, the planar turbulence intensity slice shows in fig. 7.29 shows

slightly less turbulence than the turbulent inlet case, fig. 7.20.

192

7.4 Results for Vestas V52 wind turbine

Figure 7.22: 𝑢0 = 12 m/s : evolution of 𝛼, 𝐵′ and normalised 𝑃𝑊𝑒𝑥 over time

Figure 7.23: 𝑢0 = 12 m/s : spatially and time-averaged 𝑢 profiles for varying

distances upstream and downstream

193

7.4 Results for Vestas V52 wind turbine

Figure 7.24: 𝑢0 = 12 m/s : planar contour plot of turbulence intensity

Figure 7.25: 𝑢0 = 12 m/s : planar contour plot of time-averaged velocity

deficit. The contour line ‘0’denotes full wake recovery.

194

7.4 Results for Vestas V52 wind turbine

Figure 7.26: 𝑢0 = 20 m/s : evolution of 𝛼, 𝐵′ and normalised 𝑃𝑊𝑒𝑥 over time

Figure 7.27: 𝑢0 = 20 m/s : planar contour plot of time-averaged velocity

deficit. The contour line ‘0’ denotes full wake recovery.

195

7.4 Results for Vestas V52 wind turbine

Figure 7.28: 𝑢0 = 20 m/s : spatially and time-averaged 𝑢 profiles for varying

distances upstream and downstream

Figure 7.29: 𝑢0 = 20 m/s : planar contour plot of turbulence intensity

196

7.5 Results for Seaflow marine turbine

7.5. Results for Seaflow marine turbine

7.5.1. Channel with rigid lid: inlet condition 𝑢0 = 2.70m/s

As with the Vestas V52 simulations, there was a spin-up period during which

experimental data was considered unreliable. This was further complicated

by the the ramped boundary conditions, with the maximum 𝑢0 occuring at

the boundary after 𝑡𝑟𝑎𝑚𝑝 = 3000 s. This mean that any period of stability

had to be considered only for 𝑡 > 3000 s. Beyond that critera, this was as-

certained through inspection of global turbine properties such as 𝑃𝑊𝑒𝑥 and

planar velocity slices as before.

Figure 7.30: Evolution of 𝛼, 𝐵′ and normalised 𝑃𝑊𝑒𝑥 over time

From fig. 7.30 we can see that, as expected the power output reaches its

maximum after 𝑡𝑟𝑎𝑚𝑝 at 𝑡 ≈ 3500 s. We can also see the limiting action of

𝛼, ‘kicking in’ as it does when 𝑃𝑊𝑒𝑥 occasionally exceeds 𝑃𝑊𝑒𝑥,𝑚𝑎𝑥. Unlike

the Vestas turbine however, the wake behind Seaflow exhibits no recirculation

whatsoever, and significant dips in the power as per the Vestas in fig. 7.4.

Figure 7.33 shows the planar slice of 𝑢
𝑢0

averaged over a period 𝑡𝑎𝑣 = 1500 s,

197

7.5 Results for Seaflow marine turbine

Figure 7.31: Planar slice showing 𝑢/𝑢0 at 𝑡 = 4000 s. The turbine volume is

represented by the black rectangle.

Figure 7.32: Planar slice showing 𝑢/𝑢0 at 𝑡 = 6000 s.

taken from 4500 s to 6000 s. We can see that the velocity deficit reaches a

peak of 0.4𝑢0 between 1 − 9𝐷 downstream of the turbine, and that the ‘0’

contour lines demonstrate that the water accelerates around the the turbine:

in contrast with the Vestas example in fig. 7.7, the upstream ‘0’ contour forms

a straight rather than curved line. Lastly, the wake behind the turbine shows

a 80% recovery (𝑢 ≈ 0.8𝑢0) at 𝑥 ≈ 500 m, almost 36𝐷 downstream.

The cross-sectional profile of 𝑢/𝑢0 in fig. 7.34 shows that upstream the

flow is relatively undisturbed at 𝑥′ = −5𝐷...−1𝐷. whereas at 𝑥′ = 0 develops

into a shallow ‘W’ shape, with minima of 𝑢 = 0.36𝑢0 occuring at 𝑟 ≈ ±3
4
𝑅𝑇 ,

with 𝑢 returning to at 𝑟 = ±11
2
𝑅𝑇 . Further downstream, the wake retains this

‘W’ profile until 𝑥′ = 5𝐷, whereupon the far wake develops into a ‘U’ shape.

198

7.5 Results for Seaflow marine turbine

Figure 7.33: Planar contour plot of time-averaged velocity deficit. The contour

line ‘0’ denotes full wake recovery.

Figure 7.34: Spatially and time-averaged 𝑢 profiles for varying distances up-

stream and downstream

199

7.5 Results for Seaflow marine turbine

Figure 7.35: Planar contour plot of turbulence intensity

Also noteworthy at this stage is the gradual fanning out of the wake, until at

𝑥′ = 15𝐷 it is clear ‘V’ with a minimum of 𝑢(𝑟 = 0) = 0.44𝑢0; 𝑢 → 𝑢0 at

𝑟 = ±31
2
𝑅𝑇 . There is a very slight accelerative bulge for −3𝑅𝑇 < 𝑟 > 3𝑅𝑇 ,

but this is much less pronounced than that of the Vestas V52 turbine as shown

in fig. 7.8.

The planar slice of turbulence intensity calculated over 𝑡𝑎𝑣 in fig. 7.35 shows

a peak of 𝑇𝑖 = 0.04 at 𝑥′ = 1𝐷, which decays to 𝑇𝑖 = 0.015 at 𝑥′ = 15𝐷, and

finally to negligible levels at 𝑥′ = 60𝐷. The exceptions to this wake are two

peaks of 𝑇𝑖 = 0.02 and 𝑇𝑖 = 0.015, at 𝑥′ = 24𝐷 and 𝑥′ = 58𝐷 respectively.

7.5.2. Channel with rigid lid: overview of performance

The time over which the averages were calculated, 𝑡𝑎𝑣, was defined as

𝑡𝑎𝑣 = [0.75𝐿𝑇𝐼𝑀𝐸, 𝐿𝑇𝐼𝑀𝐸] (7.15)

which gave results that were representative. Fig. 7.36 shows the power

co-efficient as a function of 𝑢0: starting at 0 for 𝑢0 = 0 m/s, it sharply jumps

to 𝑐𝑝 = 0.24 at 𝑢 = 0.5 m/s (there is no lower cut-in flowspeed). 𝑐𝑝 increases

step-wise to 0.37 at 𝑢0 = 1.5 m/s, decreasing slightly to 0.35 at 𝑢0,𝑜𝑝𝑡. Beyond

this point, 𝑐𝑝 drops sharply due to 𝑃𝑊𝑒𝑥 being limited to 𝑃𝑊𝑒𝑥,𝑚𝑎𝑥.

The plot in fig. 7.37 shows how the average 𝛼 decreases with increasing

𝑢0 whilst keeping 𝑃𝑊 𝑒𝑥 constant, dropping to 𝛼 = 0.4 at 𝑢0 = 5.00 m/s. At

𝑢0,𝑜𝑝𝑡 we can see that both 𝛼 < 1 and 𝑃𝑊 𝑒𝑥 < 𝑃𝑊𝑒𝑥,𝑚𝑎𝑥. At lower flowspeeds,

𝛼 = 1 since no limiting occurs. The circulation plot (fig. 7.38) shows that the

200

7.5 Results for Seaflow marine turbine

Figure 7.36: Performance curve for Seaflow, power output peaking at 𝑢0 =

2.70 m/s.

Figure 7.37: Plot of blade factor 𝛼 versus 𝑃𝑊𝑒𝑥/𝑃𝑊𝑜𝑝𝑡. The numbers next to

the points represent 𝑢0 in m/s.

201

7.5 Results for Seaflow marine turbine

Figure 7.38: Plot of 𝐷 versus circulation Γ for varying 𝑢0

turbine at most flow speeds does produce a negative circulation at 𝑥′ = 0, the

outlet of the turbine volume, however further downstream the circulation varies

randomly, which suggests that the turbine itself may be generating turbulence

of a larger magnitude than the net orbital motion of the water due to the

turbine blades.

7.5.3. Channel with rigid lid: comparison between flow speeds

Inlet flow speed of 𝑢0 = 1.00m/s

At this low speed, the effecitive solidity takes until 𝑡 = 4500 s (1 hour 15

minutes) to reach 0.19, at the same time the mean of 𝑃𝑊𝑒𝑥 → 0.04𝑃𝑊𝑒𝑥,𝑜𝑝𝑡

– see fig. 7.39; both show considerably less variation than at 𝑢0 = 2.70 m/s.

Moreover, 𝛼 quickly reaches its maximum of 1 and remains there, since no

limiting is required in slow-moving flow.

In fig. 7.40 the velocity deficit contour plot shows a 𝑑 = 0 contour at

𝑥′ = 7𝐷. The deficit peaks with max(𝑑) = 0.35 where 𝐷 ≤ 𝑥′ ≤ 11𝐷, in

an area the width of the turbine. The wake has about 90% recovery at 62

202

7.5 Results for Seaflow marine turbine

Figure 7.39: 𝑢0 = 1.00 m/s : 𝛼, 𝐵′ and normalised 𝑃𝑊𝑒𝑥 over time

Figure 7.40: 𝑢0 = 1.00 m/s : planar contour plot of time-averaged velocity

deficit. The contour line ‘0’ marks the recovery to free-stream velocity.

diameters downstream. The velocity profile plot (fig. 7.41) shows the cross-

sectional shape of the wake, transforming from a shallow ‘W’ at 𝑥′ = 0 to a ‘U’,

and then to a shallow ‘V’ shape, with wake broadening as it does so. The visible

turbulence contours in fig. 7.42 display a peak of 𝑇𝑖 = 0.055 at 0 ≤ 𝑥′ ≤ 1𝐷,

and a couple of lesser peaks in turbulence occur at 𝑥′ = {14𝐷, 35𝐷} ; these

could be either due to 𝑡𝑎𝑣 being too short, or the error tolerances Δ𝜖𝑢, Δ𝜖𝑣

and Δ𝜖𝑤 being too high and so not adequately resolving the flow.

203

7.5 Results for Seaflow marine turbine

Figure 7.41: 𝑢0 = 1.00 m/s : spatially and time-averaged 𝑢 profiles for varying

distances upstream and downstream

Figure 7.42: 𝑢0 = 1.00 m/s : planar contour plot of turbulence intensity

204

7.5 Results for Seaflow marine turbine

Inlet flow speed of 𝑢0 = 5.00m/s

The evolution over time of the turbine performance in fig. 7.43 shows 𝑃𝑊𝑒𝑥

reaching its maximum by 𝑡 = 1800 s, as 𝐵′ → 0.24, in less than half the time

of the Seaflow case for 𝑢0 = 2.70 m/s. The action of hard-limiting by 𝛼 can be

seen, as it also drops rapidly at = 1800 s, reaching a minimum of 𝛼 ≈ 0.4, at

2500 s fluctations excepted. It will be noted that 𝛼 to a degree varies conversely

with 𝑃𝑊𝑒𝑥, albeit with a time delay of approximately a minute.

Figure 7.43: 𝑢0 = 5.00 m/s : evolution of 𝛼, 𝐵′ and normalised 𝑃𝑊𝑒𝑥 over

time

In fig. 7.44 we see a familiar wake structure, however with one main dif-

ference. Wake recovery occurs much earlier than before; 𝑢 regainining 90%

of 𝑢0 at 𝑥′ ≈ 25𝐷; approximately half the wake recovery distance for the

𝑢0 = 2.70 m/s case. The finer-grain detail is revealed in fig. 7.45 – surpris-

ingly, min(𝑢) ≈ 0.4𝑢0, a similar velocity deficit to before. The turbulence

contours in fig. 7.46 show a peak of 𝑇𝑖 = 0.085 immediately downstream of

the turbine, dropping down to below 1% beyond 𝑥′ = 30𝐷.

205

7.5 Results for Seaflow marine turbine

Figure 7.44: 𝑢0 = 5.00 m/s : planar contour plot of time-averaged velocity

deficit.

Figure 7.45: 𝑢0 = 5.00 m/s : spatially and time-averaged 𝑢 profiles for varying

distances upstream and downstream

Figure 7.46: 𝑢0 = 5.00 m/s : planar contour plot of turbulence intensity

206

7.5 Results for Seaflow marine turbine

7.5.4. Channel with vertical velocity gradient and bottom drag

As in previous cases, we can see the spin-up period in fig. 7.47; once again,

the limiting effect of 𝛼 kicks in, with 𝛼 ≈ 0.7 after 3000 seconds.

Figure 7.47: Evolution of 𝛼, 𝐵′ and normalised 𝑃𝑊𝑒𝑥 over time

Figure 7.48: Horizontal plane contour plot of time-averaged velocity deficit.

Figure 7.48 shows the velocity deficit reaching 𝑑 = 0.7 at 𝑥′ = 1𝐷 down-

stream of the turbine. Bearing in mind that 𝑑 = 0.2 represents full wake

recovery at 𝑧 = 20 m due to the bottom drag-induced vertical velocity profile,

we can see that wake recovery in the horizontal plane at this height occurs at

approximately 17𝐷. There is also a slight asymmetry to the flow; an instan-

taneous slice of 𝑢/𝑢0 at 𝑦 = 4000 s in fig. 7.49 shows a tongue of fast-moving

207

7.5 Results for Seaflow marine turbine

Figure 7.49: Horizontal planar slice showing 𝑢/𝑢0 at 𝑡 = 4000 s. The turbine

volume is represented by the black rectangle.

Figure 7.50: Horizontal planar slice showing 𝑢/𝑢0 at 𝑡 = 6000 s.

fluid at 𝑦 > 100 m, which by 𝑡 = 6000 s has begun to dissipate and be balanced

by a similar tongue 𝑦 < 100 m. Looking at the vertical slice in fig. 7.51 we can

see the strong vertical gradient in the velocity, but we can also see that the

disturbance to the flow occurs over a longer distance. Looking at the vertical

component of the velocity in fig. 7.51, we can see that there is an upwelling

before the turbine of 𝑤 ≈ 0.2 m/s, and a downwelling of 0 > 𝑤 > −0.05 m/s

downstream.

In fig. 7.53 we see the horizontal profile of the turbulence intensity, which

peaks at 𝑇𝑖 = 0.12. It appears to be largely uniform for 𝑥 > 200 m, with

some strong turbulence near the side of the tidal channel for 𝑦 = 200 m and

𝑥 > 500 m. There is also a narrow trail of turbulence behind the turbine of

208

7.5 Results for Seaflow marine turbine

Figure 7.51: Vertical plane contour plot of time-averaged velocity deficit.

Figure 7.52: Vertical plane contour plot of time-averaged 𝑤 in m/s.

209

7.5 Results for Seaflow marine turbine

Figure 7.53: Horizontal plane contour plot of turbulence intensity

Figure 7.54: Vertical plane contour plot of turbulence intensity

𝑇𝑖 = 0.4 which extends for approximately 7𝐷 downstream. The vertical slice

of the turbulence intensity in fig. 7.54 shows a similar level of turbulence, with

relatively little for 𝑧 > 60 m, but as the vertical velocity gradient increases so

does the turbulence, with three large peaks at 𝑧 ≈ 40 m and two large patches

of turbulence near the sea floor at 𝑥 = 500 m and 𝑥 = 900 m. A small trail of

turbulence of 𝑇𝑖 = 0.04 can be seen in the turbine, extending downstream by

about 7𝐷.

210

Chapter 8

Discussion

8.1. Comparisons between simulations

8.1.1. Vestas V52: turbulent versus non-turbulent inlet condi-
tions

There are several key comparison points between the turbulent and non-

turbulent simulations. The inlet turbulence resulted in greater efficiency of

the wind turbine, and less recirculation. This becomes apparent when figures

7.10 and 7.21 are superimposed upon each other, as seen in fig. 8.1.

Figure 8.1: Performance curve for V52 with and without inlet turbulence su-

perimposed upon each other. The green area represents the turbulent inlet

simulations; the blue, the non-turbulent inlet simulations.

211

8.1 Comparisons between simulations

Two things are clear:

1. That a significant amount of additional power is being produced at lower

wind speeds in the presence of upstream turbulence.

2. That limiting of the turbine’s angular velocity, 𝜔𝑇 , via 𝛼 is effective at

limiting the performance at wind speeds greater than 𝑢0,𝑜𝑝𝑡, irrespective

of the presence or absence of upstream turbulence.

A second characteristic difference is the wake recovery. At higher wind

speeds, the turbulent inlet case has a shorter wake recovery distance than that

of the non-turbulent. Referring to the velocity profiles for 𝑢 = 20 m/s in figures

7.8 and 7.28 we can see that at 𝑥′ ≥ 3𝐷, 𝑢/𝑢0 is consistently about 5% higher

in the turbulent case.

Clearly, the turbulence generated at the inlet has a dissipative effect on

the wake, which has reduced the velocity deficit therein. From this, we can

conclude that recirculation has a negative impact on the performance on the

turbine, and that turbulence plays a key role in reducing or removing it. That

it does not show on the turbulence intensity contour plots suggests that much

of the inlet turbulence generated is sub-grid, ie. of a shorter length scale than

the minimum length of the finite elements – in this case, 1 metre. This should

not be surprising, since the algorithm generating the velocity fluctuations is

neither temporally nor spatially coherent, instead only limited by the minimum

element length, the simulation time-step size Δ𝑡, and the inlet velocity 𝑢0.

Applying coherent turbulence as a boundary condition in LES turbulence

models described by Lesieur [45] and Meneveau [54], such as those Fluidity

uses, would be a step in the right direction. It hoped that the techniques

discussed by Jarrin et al [40] can be applied to the turbine model in future.

8.1.2. Vestas V52 versus Seaflow

Whilst the principles of the horizonal axis wind turbine and the horizontal

axis marine turbine are effectively the same, the conditions under which they

operate are wholly different. As an attempt to quantify the differences, the

212

8.1 Comparisons between simulations

Reynolds number of the V52 wind turbine at a wind speed of 𝑢0,𝑜𝑝𝑡 can be

defined as

𝑅𝑒𝑎𝑖𝑟 =
𝜌𝑎𝑖𝑟𝑢0,𝑜𝑝𝑡𝐿𝑝

𝜇𝑎𝑖𝑟

(8.1)

Where 𝐿𝑝 is the approximate length scale of the problem: in this case the

sum of the blade chord lengths, calculated as 𝐿𝑝 = 𝐵𝜋𝑅𝑇 .

Simulation 𝑢0,𝑜𝑝𝑡 (m/s) 𝜌 (kg m−3) 𝜇 (Pa s) 𝐿(m)

Vestas V52 12 1.226 1.8× 10−5 3.3

Seaflow 2.7 1027 1.5× 10−3 1.7

Table 8.1: List of physical values for Reynolds number calculations

Plugging the values in from table 8.1 we have

𝑅𝑒𝑎𝑖𝑟 ≈ 2.6× 106 (8.2)

Which is safely within the turbulent regime. Similarly, for the marine

turbine simulation in the water channel without bottom drag, we have

𝑅𝑒𝑠𝑒𝑎 ≈ 3.2× 106 (8.3)

Given that 𝑅𝑒𝑠𝑒𝑎 is 23% larger than 𝑅𝑒𝑎𝑖𝑟, we can expect some differences

in flow characteristics; this is indeed borne out by examination of the velocity

deficit contour plots for the V52 turbulent inlet and the Seaflow, at their

respective values of 𝑢0,𝑜𝑝𝑡 (figs. 7.7 and 7.33).

If we superimpose the 80% recovery contours for both the V52 and Seaflow

in optimum flow conditions as in figure 8.2, we can see that while the V52

produces a significant wake 620 m longer than that of the Seaflow at approxi-

mately 380 m, and however measured in turbine diameters (𝐷), it still obeys

the 20 diameter rule-of-thumb used by wind farm engineers at a recovery dis-

tance ≈ 19𝐷; this contrasts with the Seaflow turbine wake recovery, which

stands at ≈ 35𝐷. At an initial, cursory glance, this would seem to suggest

that a hypothetical marine turbine farm woule be capable of less dense energy

213

8.1 Comparisons between simulations

Figure 8.2: Contour plots at 80% wake recovery for the Vestas V52 turbine at

𝑢0 = 12 m/s and Seaflow turbine at 𝑢0 = 2.7 m/s. The Vestas wake is in blue,

and the Seaflow wake is in green.

extraction than wind farms of similar rated power output – this does however,

neglect the impact that the density of flow medium, ie. air and seawater.

Would a marine turbine farm need a similar surface area allocated to that of

a wind farm with the same rated power output? An attempt to answer this

will be made below.

Due to the seawater’s comparatively high density, 838 times that of air

under standard conditions, although Seaflow has a diameter of 0.21𝐷𝑣𝑒𝑠𝑡𝑎𝑠

it still manages to produce 0.38 times the power of the V52 under optimum

conditions. Therefore, a more representative rule-of-thumb for effective energy

extraction density would be

𝑃𝑊𝑠𝑒𝑎𝑓𝑙𝑜𝑤

𝑃𝑊𝑣𝑒𝑠𝑡𝑎𝑠

= 𝑐𝑒𝑑
𝑊𝑠𝑒𝑎𝑓𝑙𝑜𝑤

𝑊𝑣𝑒𝑠𝑡𝑎𝑠

(8.4)

Where 𝑃𝑊𝑠𝑒𝑎𝑓𝑙𝑜𝑤 equals the power extracted under optimum conditions

(similarly for the Vestas V52), and 𝑊𝑠𝑒𝑎𝑓𝑙𝑜𝑤 is the effective wake recovery dis-

tance for the Seaflow, beyond which another turbine downstream can operate

effectively. 𝑐𝑒𝑑 is our extraction density co-efficient: if 𝑐𝑒𝑑 > 1, then a farm of

Seaflow turbines are more effective at extracting energy, per unit area, than a

farm of Vestas turbines; if 𝑐𝑒𝑑 < 1 then it is less effective. Feeding the numbers

above in, we find that

𝑐𝑒𝑑 = 0.93 (8.5)

214

8.1 Comparisons between simulations

Which puts them almost at equal par, ie. almost the same power output

per unit area.

This conclusion does though ignore several important facts. Firstly, the

highly variable and irregular nature of wind resource means that wind turbines

often will not be operating at peak output; calculations based upon mean wind

speeds may not be accurate due to the non-linear relationship between wind

speed and power output of wind turbines, as shown in figure 7.10. This con-

trasts with the flow regime of tidal straits, which can produce approximately

regular, sinusodial flows peaking four times daily. Secondly, whilst the V52 is

a commercial turbine, Seaflow is but a prototype of which one can assume that

it is not the most efficient design. Changing the diameter of the turbine will

alter the cross-sectional Reynolds number, which may affect the performance

of the turbine: it remains to be seen whether such a change will be beneficial

or detrimental. That no recirculation occurs in the Seaflow simulations, as

seen in fig. 7.34 suggests that higher values of 𝑐𝑃 are possible, however the

danger as previously mentioned is of cavitation, a risk naturally not present

with wind turbines. Lastly, aside from bathymetric-driven features, the wa-

ter tunnel experiments neglect aspects of tidal flow which have an important

effect on turbine efficiency and wake development, which are discussed in the

following section.

8.1.3. Realistic velocity profiles and bottom drag

The characteristic differences introduced along with bottom drag is that of

the velocity gradient, and of the consequent turbulence. The velocity gradient

induced by the bottom drag does several things:

1. Firstly, it reduces the incoming flow of approximately 𝑢0 by 12%, which

means that although the peak flow may be quoted as 𝑢0 = 4.0 m/s, the

turbine is effectively in a tidal stream of 𝑢0 = 3.5 m/s.

2. Secondly, it generates a great deal of turbulence as seen in figs. 7.53 and

7.54, causing a great deal of mixing between the upper and lower strata

215

8.2 Comparison with existing literature

of the flow; this dissipates the wake more effectively.

3. Thirdly, wake recovery is facilitated by the transport of kinetic energy

from faster fluid moving around the turbine: as the fluid moving over

the turbine moves faster than that under it, the top edge of the wake

is accelerated to greater degree than that below. This has the effect of

turning the wake down towards the sea floor.

Another feature of the flow is a upward flow before and over the turbine,

then the descending flow behind it, as in fig. 7.52. This strongly suggests

that, should a free-surface be implemented in a future model channel, the

surface would rise above the turbine and fall behind it creating a hydraulic

jump, which is not a phenomena that exists in wind turbine wake dynamics.

It could be speculated that this conversion of pressure energy to gravitational

energy, then finally to kinetic energy downstream, could aid recovery of the

wake; shortening the distance between turbines in a marine turbine farm and

ensuring that 𝑐𝑒𝑑 > 1.

8.2. Comparison with existing literature

8.2.1. With wind turbine theory and experiment

In approach

The turbine model in this thesis was first aimed at accurately modelling wind

turbines and far-wake behaviour, since these are relatively well understood

in terms of performance and behaviour, and as such will allow for cross-

validation. However, in terms of modelling it ignores convential stream-tube,

blade-element momentum theory and notions of lift [16] [22], instead favour-

ing a higher level approach. For instance, the effective solidity and flow factor

parameterise the complex changes in lift due to blade characteristics and flow

conditions to a simple function of the orbital velocity of the turbine; it certainly

does not attempt the level of detail that Mikkelsen aims for with actuator line

modelling [55]. In these terms, it can be thought of as half-way between single

216

8.2 Comparison with existing literature

blade blade-element analysis [24] [41] and the linear wake model of Risoe’s

WAsP, mentioned in Barthelmie [9], although it remains a full fluid dynamic

simulation – with just enough detail to give a second-by-second report of per-

fomance of the turbine the flow field around it, but not enough that modelling

a wind farm becomes unfeasible.

Primarily, it was felt that with its origins in analytic methodology [34], cur-

rent actuator disc theory in computational models such as Sørensen’s vorticity-

velocity equations [68] [69] were too abstract (as opposed to simply high level),

and that by exploiting the iterative, discrete and finite nature of computational

methodology, a simpler – or rather, more intuitive– approach could be taken.

As an example of this would be the infinitely thin disc in actuator theory,

which uses pressure as a boundary since force cannot be applied over infinte-

semal distance; by turning this into a cylinder, a force can be applied, which

can be implemented as a body force in the Navier-Stokes momentum equation.

This then makes the technique, indeed the modelling code itself, straightfor-

ward to apply or implement in finite-element, finite-difference or finite volume

CFD modelling programs.

In results

As for experimental comparisons, Hossain [37] provides an excellent source of

velocity and turbulence profiles for both the near and far wakes of microtur-

bines.

Figure 8.3: Normalised velocity upwind and downwind of micro wind turbine

(courtesy of Hossain)

217

8.2 Comparison with existing literature

Figure 8.4: Contour plots from micro wind turbine measurements. (a) of 𝑢/𝑢0.

(b) of turbulence intensity (courtesy of Hossain)

The velocity profile in fig. 8.3 demonstrates that, by and large, the Vestas

V52 simulation follows the same pattern of wake recovery. Moreover, figures

8.4(a) and 8.4(b) show that it also resembles the same wake structure in terms

of velocity and turbulence. The same twin ridges of turbulence near the blade

tips are also shown in Gomez-Elvira [35]; these are present in the results from

the thesis model, eg. in fig. 7.9.

Further validating the wake recovery, Magnusson’s measurements of the

wakes behind horizontal axis turbines at Alsvik [49] demonstrated 80% re-

covery for at 𝑥′ ≈ 16𝐷 for 23 m diameter turbines at hub height (see fig.

8.5). This is close to the distance of 𝑥′ = 17𝐷 for the Vestas model for with

𝑢0 = 12 m/s in figure 7.7. Högstrom’s wake measurements behind a 2 MW

turbine at Näsudden, Sweden [36] in fig. 8.6 show a similar wake structure,

but with sharper decay in velocity deficit at distances of 10-15𝐷. This may

be partially due to the difference in scale: the Näsudden turbine is 75 m in

diameter, over three times the size of the ones at Alsvik. Also, the Näsudden

turbine also demonstrates levels of turbulence over twice that of the thesis

model (see fig. 8.7); this we know affects wake recovery.

Another experimental validation must be that of the power output. In fig.

8.8, the thesis model without inlet turbulence is superimposed with official

figures for low-turbulence conditions, from the Danish Wind Industry Associ-

ation. Three aspects are immediately noticeable: the slight underperformance

of the model at 𝑢0 < 10 m/s, the overperformance at 𝑢0 = 12 m/s, and the

218

8.2 Comparison with existing literature

Figure 8.5: Vertical profile of the velocity deficit downwind of a 23 m turbine

at Alsvik (courtesy of Magnusson)

Figure 8.6: Mean relative velocity deficit at hub height behind a 2 MW turbine

in Näsudden, Sweden, as a function of distance downwind; other sources are

for comparison (courtesy of Högström et al)

219

8.2 Comparison with existing literature

Figure 8.7: Turbulence intensity behind a 2 MW turbine in Näsudden, Sweden,

as a function of distance downwind; other sources are for comparison (courtesy

of Högström et al)

slanting cutoff in the model for 𝑢0 > 22.5 m/s (due to the discrete jumps in

𝑢0). As far as the performance at 𝑢0 ≤ 12 m/s is concerned, a revisal of the

definition of 𝑓𝐵(𝜔𝑇) (see fig. 4.45) is in order for more accurate results; that

said, the model’s power output does represent the performance of the real

turbine with a fair degree of accuracy, over a range of wind speeds.

Comparing the thesis model to the actuator disc model of Thomsen [70],

in fig. 8.9 we can see the Thomsen model retains the effect of peak power

extraction at 𝑟 = 3
4
𝑅𝑇 even at 𝑥′ = 6𝐷, whereas the thesis model has smoothed

to ‘U’ shape 𝑥 = 2𝐷. Furthermore, in the former min(𝑢) = 0.2𝑢0, whereas

the latter shows some recirculation with min(𝑢) = −0.12𝑢0.

This recirculation can be explained partly by the restriction in the FEM

resolution. With the minimum dimension of an element set to 5 m that would

mean that the virtual Vestas V52, with a diameter of 52 m, is represented by

only 10 elements across, which coupled with Fluidity’s smoothing algorithms,

may smear out any fine detail. Decreasing the minimum element size would

resolve the flow more accurately, allowing tip-induced vorticity to be accurately

modelled and thus the turbulent mixing in the wake that it causes. This would

220

8.2 Comparison with existing literature

Figure 8.8: Power output as a function of the wind speed for the Vesta V52.

The model output is in blue, the experimental measurements in green (courtesy

of the Danish Wind Industry Association).

Figure 8.9: Down-wind velocity profiles as a function of 𝑟/𝑅 (courtesy of

Thomsen)

221

8.2 Comparison with existing literature

however increase the computational demands and effectively decrease the size

of the domain being simulated: note that the Thomsen model simulates to

𝑥′ = 6𝐷 downstream a quarter the length of the wind tunnel domain in this

thesis.

The second significant cause of this may be the treatment of the hub.

Ideally, the hub should be treated as a solid obstacle with a slip condition,

rather than just a momentum sink. This however would require enforcing

boundary conditions at the surface of the hub:

𝑢⊥ = 0 (8.6)

𝜕𝑢//,𝑖

𝜕𝑥𝑖

= 0 (8.7)

Which represent the velocity components of the fluid that are both per-

pendicular and parallel to the surface of the hub respectively. The problem

is that the thesis model by definition does not have any boundary conditions,

and so the hub is modelled as a partial momentum sink. Because of this, the

wind speed directly downwind of the hub is reduced.

The third suspect is the solidity distribution of the blades. On modern

wind turbines, the solidity actually drops towards the hub (see photograph

in fig. 6.2), whereas in the model it increases until it reaches the hub. If

the model followed solidity distribution of the real Vestas, the kinetic energy

of the fluid near the hub would be higher, which would feed momentum into

the wake, thus reducing or dispersing recirculation eddies. There is nothing

preventing an extension to the model to deal with this, since the local solidity

is defined as a function of radius, ie. 𝛽(𝑟).

Regardless of the near-wake recirculation issues, the model closely emulates

the actual performance of single turbines and the wake recovery behind them;

these were the main concerns in building a model capable of simulating air

flow through and around turbines over distances greater than 1 km.

A worthwhile future study may be of how the model’s wake structures

222

8.2 Comparison with existing literature

Figure 8.10: SODAR measurements showing distance downwind versus relative

velocity deficit at hub height (courtesy of Barthelmie et al)

change in multiple turbine arrangements and more realistic environments. In

their paper on wind farm wakes, Barthelmie et al [10] show SODAR measure-

ments of the velocity deficit behind a single wind turbine within the Vindeby

offshore wind farm in Denmark (see fig. 8.10). This clearly points to faster

wake recovery than in the model: for comparison, see figs. 7.14 and 7.18. To

understand why turbulence is so important, we must consider the role that it

plays in wake development. Turbulence has a diffusive effect on the wake, aid-

ing the transport of kinetic energy from the outer, faster wake flow to the more

stagnant inner layers; therefore, we can expect higher levels of turbulence to

equate to shorter wakes. This may be of key importance to understand wake

recovery, and thus turbine performance, within large wind farms.

In real wind farms such as Vindeby, there are additional significant con-

tributors to turbulence such as upwind turbine wakes and the sea surface.

From the marine turbine model results in section 7.5, we can see that impos-

ing a vertical velocity gradient – necessary for modelling sea surface friction –

223

8.2 Comparison with existing literature

Figure 8.11: Vertical profiles of the horizontal wind velocity component in the

wake of a scaled turbine. 𝐷 is diameters downwind (courtesy of Pascheke and

Hancock)

also contributes to wake shortening, and indeed increases levels of turbulence.

Pascheke and Hancock [61] show in their scale model that the reduced surface

roughness in off-shore environments (in comparison to on-shore) still has a

profound effect on the vertical structure of the wake – see fig. 8.11. The scale

model was verified with Högstrom’s 1988 field data for the wake behind a 2MW

wind turbine. If the Vestas V52 simulations were extended to include multiple

turbines and friction on the bottom of the wind tunnel, something which the

thesis model software is capable of doing, we should expect down-wind tur-

bine wakes to be shortened as a consequence. More recently, Barthelmie has

initiated a preliminary investigation along these lines [11].

8.2.2. With marine turbine theory and experiment

Information on the performance of horizontal axis marine current turbines and

the wakes that such turbines produce is harder to come by than that of wind

turbines. Certainly, the Seaflow model performed to the specifications laid out

224

8.2 Comparison with existing literature

[30] [48], however real performance data proved difficult to obtain, perhaps

understandably given the sensitive commercial nature of such information.

What we can talk about is aspects of the flow in the marine environment

that differentiate it from that of wind turbines. Bryden et al in their discussion

of marine power site criteria [13] touch upon the issues raised by flow with a

strong vertical velocity gradient, namely restrictions on turbine diameter and

depth of the channel (see figure 8.12). It can be seen that the Seaflow model

used in section 8.1.3 fits both the depth and diameter criteria.

Figure 8.12: Restriction on turbine dimensions in a idealised tidal channel

(courtesy of Bryden et al).

Moving on to free surfaces and whether they will have any significant im-

pact on marine turbine performance, it was speculated in the section above

that the upwelling before the Seaflow turbine would lead to a hydraulic jump

with a free surface. Myers [56] proved that this is can occur in experiment

with a 1
30

scale turbine with a free surface; see figure 8.13.

But what kind of surface disturbance could be expected? The Froude

number indicates whether supercritical or subcritical flow can be expected.

This is defined [71] as

𝐹𝑟 =
𝑢0√
𝑔𝐿

(8.8)

Where 𝑔 is the acceleration due to gravity, and 𝐿 here is the critical length.

From Myers, for a rectangular channel this is

225

8.2 Comparison with existing literature

Figure 8.13: Surface elevation downstream of a scaled marine turbine in ex-

periment for 𝑢0 = 2.35 m/s (courtesy of Myers et al).

𝐿 =

(︃
𝑄2

𝑔𝐵2

)︃
(8.9)

where 𝑄 is the mass flow rate, and 𝐵 the width of the channel. For a 40

m deep channel, over a cross-section 10 m wide in a current of 2.00 m/s this

gives

𝐹𝑟 ≈ 0.03 (8.10)

This suggests that the surface displacement over full-scale marine turbines

in tidal straits are likely to be small.

226

Chapter 9

Conclusions

The main aim of the model in this thesis was to produce an intuitive, high-

level model of a horizontal axis turbine, that would be both applicable to wind

turbines and marine current turbines. It was designed to behave as a real

turbine, so that even though heavily parameterised, once the parameters for a

particular model of turbine had been fed in, it would behave as a real turbine

would in a variety of flow conditions. It was also designed so that it could, with

modest computing resources such as a desktop workstation, simulate at least

one wind or marine turbine over a large enough domain to study the far wake.

Moreover through its distributed, parallel design, given adequate processing

power there is no reason why the model should not scale to the simulation of

turbine farms.

9.1. Achievements

From chapter 7, the model has produced similar 𝑐𝑃 curves to that of a real wind

turbine, the Vestas V52. It has also produced velocity deficit contour plots and

velocity profiles that closely resemble that of experimental data. Turbulence

plots have mostly agreed with available data, however two problems remain.

Firstly, that only the visible turbulence is being measured, so that the sub-

grid turbulence remains unquantified. Secondly, realistic turbulence needs to

be coherent turbulence, which is as yet untested waters in unstructured finite-

element CFD modelling; the current algorithm generates deviations in the fluid

velocity that are Gaussian white (uncorrelated) noise. This has the unphysical

side-effect of being dependent on the simulation time-step size Δ𝑡: higher

values of 𝑢0 require smaller Δ𝑡 to maintain a Courant number 𝐶𝑟 ≈ 1 and

227

9.2 Future work

thus stability. Thus, at higher windspeeds the higher frequences will start to

dominate the turbulence spectra. Yet, section 7.4 demonstrated that through

comparing turbulent and non-turbulent inlet conditions, sub-grid turbulence

was being generated and having an effect – it was clear that the dissipative

effective of the additional turbulence viscosity was improving the performance

of the Vestas especially at lower wind speeds.

The simulation of the Seaflow marine turbine raised some interesting ques-

tions. While an increased wake length was not wholly unexpected due to higher

Reynolds numbers, a wake recovery twice that of the Vestas was a surprise,

and suggests profound implications for designers of marine turbine farms in

the future. As the basic analysis in section 8.1.2 has shown, despite the energy-

density of seawater flowing through tidal straits there are practical limits to

the extraction density; the number of turbines per square kilometre, if you

prefer.

Lastly, this thesis has hopefully vindicated Fluidity’s approach to CFD. By

using an hr-adaptive, finite-element mesh, Fluidity has allowed the simulation

of the complete wake behind both turbines, on a computer no more powerful

than a modern standard PC. It has done this by adding and moving element

nodes to areas where the velocity gradients are largest, such as the wake - so

satisifying the specified error tolerances - and by removing and moving nodes

away from areas where the velocity gradients are small. Thus if the adaptive

mesh error tolerances and element dimension ranges correctly set, a simulation

of 10 minutes in a wind tunnel can take less than a day to run, and yet give

useful results.

9.2. Future work

The author’s ambitions in this area can be placed into two categories: en-

hancement of the model, and enhancing the simulation domain of the model.

The foremost candidate for enhancement of the model would be is the tur-

bulence generation algorithm within the turbine. Coherent turbulence requries

228

9.2 Future work

a memory of the past flow field, which in an unstructured mesh proves diffi-

cult. That said, by interpolating to a regular mesh within the turbine volume

and storing the points on that mesh for several time steps, spatially and tem-

porally coherent turbulence within the turbine should be possible. Currently,

simulation runs spend less than 0.01% of their time within the turbine model

routines, so an linear interpolation routine would be feasible.

As for simulation domains – the deployment of the model in this thesis

has been for the most part in idealised conditions, necessary for validation

purposes. Now that that stage is complete, more realistic domains are desirable

to gauge the reaction of the model to such environments. For wind turbines,

this would be the introduction of geographic features such as hills and terrain,

as well as buildings, trees and obstacles typical of urban environments. A key

point to remember is that Fluidity with its oceanographic roots is capable

of this already, since the bottom of the model domain is already specified as

a depth, albeit a constant one in the simulations in this thesis. However,

the depth can can be varied if to represent any convex surface and thus the

features listed above. As for marine turbines, the introduction of a free surface

and bathymetric features such as seamounts, ridges, depressions and coastlines

would represent an exciting step forward in study of marine turbines in their

operating environment.

Lastly, concerning both marine and wind turbines, a study of the down-

stream effects on a secondary turbines seems an avenue worth exploring. The

model has been implemented in a wholly parallel fashion, and is capable of sup-

porting multiple turbines running simultaneously – prelimary test runs have

been made with this in mind.

229

Appendix A

Test CFD solvers

A.1. An implementation of a SIMPLE algorithm

To investigate the SIMPLE algorithm, a C program was built based upon it.

The following is a listing of the main parts of the program, with explanations

of the mathematics behind it throughout the listing.

It did not work completely correctly, perhaps because of the explicit solu-

tion of 𝛿𝑝, which despite an application of a variety of relaxation parameter

values proved rather unstable; or the diffusion terms for 𝑦 axis-based contri-

butions were incorrect. At this point, it was becoming plain that there were

certain shortcomings in finite difference models which would greatly affect their

applicability to tidal modelling over the scales and at level of detail that would

be required in future.

A.1.1. Model overview

The model was two dimensional, modelling what should be evolve to become

horizontal steady flow, but with extensions could model unsteady flow. Ini-

tially, a staggered grid approach was implemented, then a centred-difference

scheme as it was more straightforward to implement; Fletcher [27] discusses

the advantages of using these.

The top boundary is a solid, moving boundary, which has a fixed velocity

along the 𝑥 axis, while the bottom boundary is solid and stationary; ie. both

Dirichlet. The left and right boundaries are Von Neumann.

A.1.2. Program structure

The program essentially follows the steps below:

230

A.1 An implementation of a SIMPLE algorithm

1. Initialisation – set the initial values for the main global variables such

as 𝑢𝑛, 𝑢*, 𝑝, etc.

2. Display results – after 𝑁 time-steps, print 𝑢𝑛 and diagnostic informa-

tion

3. Boundary conditions – set Dirichlet and Boundary conditions for 𝑢𝑛.

4. Calculation – ∇𝑝, 𝑢*, 𝛿𝑝, etc.

5. Loop from second step – if the maximum number of iterations has

not been reached.

A.1.3. Parameters

Model parameters that could be set were:

∙ Reynolds number 𝑅𝑒

∙ Grid spacing via Δ𝑥 and Δ𝑦

∙ The number of points on the grid in both 𝑥 and 𝑦-axis directions

∙ Time-step size Δ𝑡

A.1.4. The main routine and entry point

This is the first routine the program calls when run. It also contains all the

major variables, including:

∙ Vector **u Vector **u – a 2D array of C structures containing x and

y components of the velocity at time step 𝑛; eg. 𝑢𝑛

∙ Vector **ug – 𝑢*

∙ Vector **uc – 𝑢𝑐

∙ Vector **gradP – ∇𝑝

∙ Vector **a u – contains 𝑎𝑢
𝑗,𝑘 and 𝑎𝑣

𝑗,𝑘 ∀(𝑗, 𝑘)

231

A.1 An implementation of a SIMPLE algorithm

∙ FlowCell **fc – a 2D array of structures, the most important compo-

nent of which is the pressure 𝑝𝑛.

#include <stdio.h>

#include {\textquotedbl}structs.h>

#include {\textquotedbl}externs.h>

#include {\textquotedbl}defines.h>

GlobalVariables globalVars;

int main(int argc, char **argv)

{

int error=0;

IntVector size;

Vector **u, **ug, **uc, **a_u;

Boundary *boundary;

FlowCell **fc;

Vector **gradP;

double **deltaP;

double t;

int n=0, nflag;

initGlobalVariables();

size=globalVars.size;

This part allocates memory to the main arrays. createArray(), createVec-

torArray() and createFlowCellArray() are routines contained in an external C

module.

u = createVectorArray(size);

ug = createVectorArray(size);

232

A.1 An implementation of a SIMPLE algorithm

boundary = createBoundaryArray(size, NUM_DIMENSIONS);

ug = createVectorArray(globalVars.size);

uc = createVectorArray(size);

a_u = createVectorArray(size);

fc = createFlowCellArray(size);

gradP = createVectorArray(size);

deltaP = (double **)createArray(size, sizeof(double));

error=initialiseEverythingElse(u, boundary, fc);

/* If there was no bother with the initialisation, go on right ahead.

*/

if(!error)

{

This is the start of the main loop. t is incremented in steps of global-

Vars.delta t until it is larger than globalVars.maxTime.

The condition if(n%1==0) will output results every iteration; changing the

1 to 100, say, would output every 100 iterations.

calculateEverything() calls the real meat of the program; the calculation

module. It passes all variables to the central routine in the SIMPLE algorithm

module, which are then passed to further subroutines for specific calculations.

Note – only u and fc will be carried forward from the last iteration; the other

variables are here for program structuring purposes, and to allow the output

of diagnostic information in the main routine.

/* Run simulation until time limit reached, or error occurs */

233

A.1 An implementation of a SIMPLE algorithm

for(t=0.0; t<globalVars.maxTime; t+=globalVars.delta_t, n++)

{

/* Every ten loops, output some data */

if(n\%1==0)

{

printf("outputResults()\n");

outputResults(u, size, t, n);

}

printf({"time: \%.6f\n", t);

error=calculateEverything(u, ug, uc, a_u,

boundary,

fc, gradP, deltaP);

if(error) break;

}

}

/* Exit stuff */

if(error)

{

fprintf(stderr, "< Error caught! > \n");

exit(1);

} else {

printf("*** Completed ok\n");

exit(0);

}

}

234

A.1 An implementation of a SIMPLE algorithm

A.1.5. Initialisation

This module contains the routines which set the initial values for all the im-

portant variables. initialiseEverything() sets up the initial 𝑢𝑛 values, as well

as calling routines to set the boundary conditions and the pressure values.

initGlobalVariables() initialises the parameters, such as Δ𝑥, Δ𝑦 and Δ𝑡,

etc.

#include <structs.h>

#include <externs.h>

#include <defines.h>

/* Entry point for initialise.c .

Calls other dependant functions --

except for initGlobalVariables, which is called seperately from main.c

*/

int initialiseEverythingElse(Vector **vel,

Boundary *boundary,

FlowCell **fc)

{

initVelocitiesAndPressure(vel, fc);

initBoundaries(boundary);

return 0;

}

int initGlobalVariables()

{

globalVars.delta.x=globalVars.delta.y

=globalVars.delta.z=0.5;

globalVars.size.x=12;

235

A.1 An implementation of a SIMPLE algorithm

globalVars.size.y=12;

globalVars.size.z=0;

globalVars.fcSize.x=globalVars.size.x;

globalVars.fcSize.y=globalVars.size.y;

globalVars.fcSize.z=globalVars.size.z;

globalVars.Re=0.5;

globalVars.delta_t=1;

globalVars.maxTime=100;

return 0;

}

This routine fixes the initial velocities and pressure: both pressure and

velocity are initially set to zero. Boundary conditions will diffuse flow into the

model as the iterations progress.

/* Set-up the velocity and pressure fields */

int initVelocitiesAndPressure(Vector **vel, FlowCell **fc)

{

int i, j;

IntVector size=globalVars.size;

IntVector fcSize;

/* First the velocity field */

vel=(Vector **)createVectorArray(size);

for(i=0; i<size.x; i++)

for(j=0; j<size.y; j++)

vel[i][j].x=vel[i][j].y=vel[i][j].z=0;

236

A.1 An implementation of a SIMPLE algorithm

/* Now the flow cells */

fcSize.x=size.x-1;

fcSize.y=size.y-1;

fcSize.z=0;

fc=(FlowCell **)createFlowCellArray(fcSize);

for(i=0; i<fcSize.x; i++)

for(j=0; j<fcSize.y; j++)

{

fc[i][j].pressure=0;

fc[i][j].cellType=CELL_EMPTY;

}

return 0;

}

This routine sets the boundary conditions. BD DEPENDENT indicates a

Von Neumann boundary; BD CONSTANT, Dirichlet.

/* Routine for setting boundary-specific values */

int initBoundaries(Boundary *boundary)

{

int i, j;

IntVector size=globalVars.size;

/* set X boundaries

Bottom of model is solid and so fixed, top assumes no vel gradient. */

boundary[LEFT_BD].boundaryType=BD_DEPENDENT;

237

A.1 An implementation of a SIMPLE algorithm

/* commented out for just now, Poiseuille flow is just wrong...

setVelocityProfile(&boundary[LEFT_BD], FL_POISEUILLE, size, 1.0); */

boundary[RIGHT_BD].boundaryType=BD_DEPENDENT;

/* set Y boundaries.

Left of model is constant, right of model is calculated from internal

values */

boundary[BOTTOM_BD].boundaryType=BD_CONSTANT;

for(i=0; i<size.x; i++)

{

boundary[BOTTOM_BD].u[i].x

=boundary[BOTTOM_BD].u[i].y

=boundary[BOTTOM_BD].u[i].z

=0;

}

boundary[TOP_BD].boundaryType=BD_CONSTANT;

/* set fluid moving horizontally along top */

for(i=0; i<size.x; i++)

{

boundary[TOP_BD].u[i].x=0.5;

/* dirty hack, will make configurable later */

boundary[TOP_BD].u[i].y = boundary[TOP_BD].u[i].z = 0;

}

238

A.1 An implementation of a SIMPLE algorithm

return 0;

}

This routine is commented out; it was never used.

/* Set up Poiseuille flow at left boundary */

/*

int setVelocityProfile(Boundary *leftBoundary,

int flowType, double flowParam)

{

int i, j;

double Re=globalVars.Re;

Vector delta=globalVars.delta;

Vector size=globalVars.size;

switch(flowType)

{

case FL_POISEUILLE:

default:

break;

}

return 0;

}

*/

239

A.1 An implementation of a SIMPLE algorithm

A.1.6. The calculation routines

#include <stdio.h>

#include <math.h>

#include <structs.h>

#include <externs.h>

#include <defines.h>

int calculateEverything(Vector **u_n,

Vector **ug,

Vector **uc,

Vector **a_u,

Boundary *boundary,

FlowCell **fc,

Vector **gradP,

double **deltaP)

{

int i, j, error=0;

IntVector size=globalVars.size;

enforceBoundaryConditions(u_n, boundary, size);

printVectorArray(u_n, size);

calcPressureGradient(fc, gradP, size);

printf({"calcDeltaP()\n");

calcDeltaP(deltaP, uc, a_u, size);

copyVectorArray(u_n, ug, size);

printf({"calcGuessVelocity()\n");

240

A.1 An implementation of a SIMPLE algorithm

calcGuessVelocity(ug, u_n, boundary, gradP, a_u, fc, size);

printf("calcVelocityCorrection()\n");

calcVelocityCorrection(uc, deltaP, a_u, size);

printf("updatePressure()\n");

updatePressure(fc, deltaP, size);

printf("updateVelocities()\n");

updateVelocities(u_n, ug, uc,size);

/* If an error has occurred, return error code */

if(error)

return 1;

else

return 0;

}

enforceBoundaryConditions() copies values to or from the boundary in the

𝑢𝑛 array, depending on the boundary type:

1. BD DEPENDENT – values will be copied outward from the outermost-

but-one line of velocity values to the boundary, thus enforcing Von Neu-

man boundary conditions.

2. BD CONSTANT – fixed velocity values will be written the boundary

and adjacent inner rows or columns, for Dirichlet boundary conditions.

int enforceBoundaryConditions(Vector **vel, Boundary *boundary,

IntVector size)

{

int i, j, n;

241

A.1 An implementation of a SIMPLE algorithm

/* X boundaries first */

for(n=0; n<2; n++)

for(j=0; j<size.y; j++)

{

switch(boundary[n].boundaryType)

{

case BD_DEPENDENT:

if(n==LEFT_BD)

{

/* left boundary */

vel[0][j]=vel[2][j];

vel[1][j]=vel[2][j];

} else {

/* right boundary */

vel[size.x-1][j]=vel[size.x-3][j];

vel[size.x-2][j]=vel[size.x-3][j];

}

break;

case BD_CONSTANT:

if(n==LEFT_BD)

{

/* left boundary */

vel[0][j]=boundary[n].u[j];

vel[1][j]=boundary[n].u[j];

} else {

/* right boundary */

242

A.1 An implementation of a SIMPLE algorithm

vel[size.x-1][j]=boundary[n].u[j];

vel[size.x-2][j]=boundary[n].u[j];

}

break;

default:

break;

}

}

/* Now Y boundaries ... */

for(n=2; n<4; n++)

for(i=0; i<size.x; i++)

{

switch(boundary[n].boundaryType)

{

case BD_DEPENDENT:

if(n==BOTTOM_BD)

{

/* bottom boundary */

vel[i][0]=vel[i][2];

vel[i][1]=vel[i][2];

} else {

/* top boundary */

243

A.1 An implementation of a SIMPLE algorithm

vel[i][size.y-1]=vel[i][size.y-3];

vel[i][size.y-2]=vel[i][size.y-3];

}

break;

case BD_CONSTANT:

if(n==BOTTOM_BD)

{

/* bottom boundary */

vel[i][0]=boundary[n].u[i];

vel[i][1]=boundary[n].u[i];

} else {

/* top boundary */

vel[i][size.y-1]=boundary[n].u[i];

vel[i][size.y-2]=boundary[n].u[i];

}

break;

default:

break;

}

}

return 0;

}

244

A.1 An implementation of a SIMPLE algorithm

This function calculates the coefficient matricies for 𝑎𝑢 and 𝑎𝑣. This is

called from within calcGuessVelocity(), twice.

int calcVelocityCoeffs(Vector **a_u, Vector **u, IntVector size)

{

int i, j;

double twoDyRe=globalVars.delta.y/(globalVars.Re*globalVars.delta.x);

double twoDxRe=globalVars.delta.x/(globalVars.Re*globalVars.delta.y);

double quarterDx=globalVars.delta.x/4.0;

double quarterDy=globalVars.delta.y/4.0;

for(i=1; i<size.x-1; i++)

for(j=1; j<size.x-1; j++)

{

a_u[i][j].x =

+ quarterDy * (u[i][j].x + u[i+1][j].x - u[i-1][j].x - u[i][j].x)

+ twoDyRe

+ quarterDx * (u[i][j].y + u[i+1][j].y - u[i-1][j].y - u[i+1][j-1].y)

+ twoDxRe;

a_u[i][j].y =

+ quarterDy * (u[i][j].x + u[i+1][j].x - u[i-1][j].x - u[i-1][j+1].x)

+ twoDyRe

+ quarterDx * (u[i][j].y + u[i][j+1].y - u[i][j-1].y - u[i][j].y)

+ twoDxRe;

}

return 0;

245

A.1 An implementation of a SIMPLE algorithm

}

Using a four-point first-order star difference scheme, calculate the pressure

gradient ∇𝑝:

int calcPressureGradient(FlowCell **fc, Vector **gradP, IntVector size)

{

int i, j;

Vector delta=globalVars.delta;

for(i=0; i<size.x; i++)

{

for(j=0; j<size.y; j++)

{

/* Get x-component of pressure gradient */

if(i==0)

gradP[i][j].x=(fc[i+1][j].pressure - fc[i][j].pressure)/delta.x;

else {

if(i==size.x-1)

{

gradP[i][j].x=(fc[i][j].pressure - fc[i-1][j].pressure)/delta.x;

} else {

gradP[i][j].x=(fc[i+1][j].pressure - fc[i][j].pressure)/delta.x;

}

}

/* Get y-component of pressure gradient */

if(j==0)

gradP[i][j].y=(fc[i][j+1].pressure - fc[i][j].pressure)/delta.y;

else {

if(j==size.y-1)

gradP[i][j].y=(fc[i][j].pressure - fc[i][j-1].pressure)/delta.y;

246

A.1 An implementation of a SIMPLE algorithm

else

gradP[i][j].y=(fc[i][j+1].pressure - fc[i][j].pressure)/delta.y;

}

}

}

return 0;

}

calcGuessVelocity() calculates 𝑢*. Essentially, this solves

(
Δ𝑥Δ𝑦

Δ𝑡
+ 𝑎𝑢

𝑗,𝑘)𝑢
*
𝑗,𝑘 +

∑︁
𝑎𝑢

𝑛𝑏𝑢
*
𝑛𝑏 = −𝑏𝑢 −Δ𝑦(𝑝𝑛

𝑗+1,𝑘 − 𝑝𝑛
𝑗,𝑘) (A.1)

and the similar equation for 𝑣*𝑗,𝑘, for 𝑢*𝑗,𝑘 and 𝑣*𝑗,𝑘 respectively by treating

them as a simultaneous set of equations. To make this easier, the equations

are split up into x and y contributions using the ADI (alternating direction

implicit) method in Fletcher to turn these equations into a sparse tridiagonal

matrix, which can then be solved by the Thomas algorithm. The ADI method

essentially treats the first part, the x sweep, as a half-time step, and so all

values of Δ𝑡 are changed to 0.5Δ𝑡; the velocities are then solved along the x-

axis as the tridagonal matrix via Thomas. The solutions for this intermediate

equation, 𝑢′𝑗,𝑘, are then solved along the y-axis via Thomas again to produce

𝑢*𝑗,𝑘.

/* calcGuessVelocity():

Calculates new ’guess velocity’ (ie.

not corrected for continuity law), using

a combination of the Thomas algorithm

and ADI (alternating direction implicit) */

int calcGuessVelocity(Vector **ug,

247

A.1 An implementation of a SIMPLE algorithm

Vector **u_n,

Boundary *boundary,

Vector **gradP,

Vector **a_u,

FlowCell **fc,

IntVector size)

{

int i, j;

Vector delta=globalVars.delta;

double delta_t=globalVars.delta_t;

double Re=globalVars.Re;

double twoDxDyOverDt=2.0*delta.x*delta.y/delta_t;

int maxDimen = size.x>size.y?size.x:size.y;

Vector **ugDash = createVectorArray(size);

double *uxTemp = (double *)malloc(sizeof(double) * maxDimen);

double *uyTemp = (double *)malloc(sizeof(double) * maxDimen);

double *ax = (double *)malloc(sizeof(double) * maxDimen);

double *ay = (double *)malloc(sizeof(double) * maxDimen);

double *bx = (double *)malloc(sizeof(double) * maxDimen);

double *by = (double *)malloc(sizeof(double) * maxDimen);

double *cx = (double *)malloc(sizeof(double) * maxDimen);

double *cy = (double *)malloc(sizeof(double) * maxDimen);

248

A.1 An implementation of a SIMPLE algorithm

double *dx = (double *)malloc(sizeof(double) * maxDimen);

double *dy = (double *)malloc(sizeof(double) * maxDimen);

calcVelocityCoeffs(a_u, u_n, size);

/* X sweeps first (ADI algorithm) */

for(j=2; j<size.x-2; j++)

{

/* prepare variables for Thomas algorithm */

for(i=2; i<size.x-2; i++)

{

uxTemp[i-2] = u_n[i][j].x;

uyTemp[i-2] = u_n[i][j].y;

ax[i-2] = (delta.y / 4.0)*(u_n[i][j].x + u_n[i+1][j].x) -

delta.y/(Re * delta.x);

bx[i-2] = twoDxDyOverDt + a_u[i][j].x;

cx[i-2] = (-delta.y / 4.0) * (u_n[i-1][j].x + u_n[i][j].x) -

delta.y/(Re * delta.x);

dx[i-2] = - twoDxDyOverDt * u_n[i][j].x - gradP[i+1][j].x * delta.y;

ay[i-2] = (delta.y / 4.0)*(u_n[i][j].x + u_n[i][j+1].x) -

delta.y/(Re * delta.x);

by[i-2] = twoDxDyOverDt + a_u[i][j].y;

cy[i-2] = (-delta.y / 4.0) * (u_n[i-1][j].x + u_n[i-1][j+1].x) -

delta.y/(Re * delta.x);

249

A.1 An implementation of a SIMPLE algorithm

dy[i-2] = - twoDxDyOverDt * u_n[i][j].y - gradP[i][j+1].y * delta.x;

}

/* Thomas algorithm now */

thomasAlgorithm(uxTemp, ax, bx, cx, dx, size.x-4);

thomasAlgorithm(uyTemp, ay, by, cy, dy, size.y-4);

for(i=2; i<size.x-2; i++)

{

ugDash[i][j].x = uxTemp[i-2];

ugDash[i][j].y = uyTemp[i-2];

}

}

enforceBoundaryConditions(ugDash, boundary, size);

calcVelocityCoeffs(a_u, ug, size);

/* Y sweep now */

for(i=2; i<size.x-2; i++)

{

/* Prepare for Thomas */

for(j=2; j<size.y-2; j++)

{

uxTemp[j-2]=ugDash[i][j].x;

uyTemp[j-2]=ugDash[i][j].y;

ax[j-2] = (delta.x / 4.0)

250

A.1 An implementation of a SIMPLE algorithm

* (ugDash[i][j].y + ugDash[i+1][j].y) - delta.x/(Re * delta.y);

bx[j-2] = twoDxDyOverDt + a_u[i][j].x;

cx[j-2] = (-delta.x / 4.0) *

(ugDash[i][j-1].y + ugDash[i+1][j-1].y) - delta.x/(Re * delta.y);

dx[j-2] = - twoDxDyOverDt * ugDash[i][j].x - gradP[i+1][j].x *

delta.y;

ay[j-2] = (delta.x / 4.0)

* (ugDash[i][j].y + ugDash[i][j+1].y) - delta.x/(Re * delta.y);

by[j-2] = twoDxDyOverDt + a_u[i][j].y;

cy[j-2] = (-delta.x / 4.0)

* (ugDash[i][j-1].y + ugDash[i][j].y) - delta.x/(Re * delta.y);

dy[j-2] = - twoDxDyOverDt * ugDash[i][j].y - gradP[i][j+1].y *

delta.x;

}

/* Thomas algorithm now */

thomasAlgorithm(uxTemp, ax, bx, cx, dx, size.x-4);

thomasAlgorithm(uyTemp, ay, by, cy, dy, size.y-4);

for(=2; j<size.y-2; j++)

{

ug[i][j].x = uxTemp[j-2];

251

A.1 An implementation of a SIMPLE algorithm

ug[i][j].y = uyTemp[j-2];

}

}

deleteArray((void **)ugDash, size);

free(dy);

free(dx);

free(cy);

free(cx);

free(by);

free(bx);

free(ay);

free(ax);

free(uyTemp);

free(uxTemp);

return 0;

}

thomasAlgorithm() employs the Thomas Algorithm to solve sparse tridi-

agonal matrices, such as those created from a series of points governed by

three-point finite difference equations.

/* thomasAlgorithm():

Solves sparse matrices. */

int thomasAlgorithm(double *u, double *a, double *b, double *c, double

252

A.1 An implementation of a SIMPLE algorithm

*d, int maxN)

{

int n;

double *c_dash = (double *)malloc(sizeof(double) * maxN);

double *d_dash = (double *)malloc(sizeof(double) * maxN);

/* sweep forward */

c_dash[0] = c[0]/b[0];

d_dash[0] = d[0]/b[0];

for(n=1; n<maxN; n++)

{

c_dash[n] = c[n] /

(b[n] - a[0]*c_dash[n-1]);

d_dash[n] = (d[n] - a[n]*d_dash[n-1]) /

(b[n] - a[n]*c_dash[n-1]);

}

/* now sweep back, solving for u */

u[maxN-1] = d_dash[maxN-1];

for(n=maxN-2; n>=0; n--)

u[n] = d_dash[n] - u[n+1]*c_dash[n];

free(c_dash);

free(d_dash);

return 0;

253

A.1 An implementation of a SIMPLE algorithm

}

calcDeltaP() uses an explicit FTCS scheme to solve for 𝛿𝑝. This was,

on reflection, perhaps a bad choice: even with relaxation parameters explicit

methods such as this can prove unstable, and may need many iterations to

converge for lower values of those relaxation parameters. Perhaps an implicit

scheme would have been better, employing the combination of the ADI method

and Thomas algorithm for quasi-simultaneous solution in a similar fashion to

that of 𝑢*𝑗,𝑘: this would have required the construction of a Δ𝑡-like parameter

for the intermediate x and y sweeps.

int calcDeltaP(double **dp,

Vector **ug,

Vector **a_u,

IntVector size)

{

int i, j;

int n=0;

int convergence=0;

Vector E;

double **oldDp=(double **)createArray(size, sizeof(double));

double **bp=(double **)createArray(size, sizeof(double));

Vector **d=createVectorArray(size);

Vector delta=globalVars.delta;

double delta_t=globalVars.delta_t;

/* Keep the coefficents up to date */

calcVelocityCoeffs(a_u, ug, size);

254

A.1 An implementation of a SIMPLE algorithm

for(i=1; i<size.x-1; i++)

for(j=1; j<size.y-1; j++)

{

bp[i][j] =

(ug[i-1][j].x-ug[i][j].x)*delta.y

+ (ug[i][j-1].y-ug[i][j].y)*delta.x;

E.x = delta_t * a_u[i][j].x / (delta.x*delta.y);

E.y = delta_t * a_u[i][j].y / (delta.x*delta.y);

d[i][j].x = E.x * delta.y/((1+E.x)*a_u[i][j].x);

d[i][j].y = E.y * delta.x/((1+E.y)*a_u[i][j].y);

}

/* I went for an iterative and explicit solution here. */

/*

while(n++<MAX_CONVERGENCE_LOOPS

| | convergence==0)

*/

while(n++<100) // Quick hack until I write a convergence testing routine

{

/* make copy of old dp */

copyArray((void **)dp, (void **)oldDp, size, sizeof(double));

for(i=1; i<size.x-1; i++)

for(j=1; j<size.y-1; j++)

{

dp[i][j] =

255

A.1 An implementation of a SIMPLE algorithm

(

(oldDp[i+1][j] * d[i][j].x * delta.y)

+ (oldDp[i-1][j] * d[i-1][j].x * delta.y)

+ (oldDp[i][j+1] * d[i][j].y * delta.x)

+ (oldDp[i][j-1] * d[i][j-1].y * delta.x)

+ bp[i][j]

) / (

(d[i][j].x+d[i-1][j].x)*delta.y

+ (d[i][j].y+d[i][j-1].y)*delta.x

);

}

convergence=checkForConvergence(dp, oldDp, size);

}

deleteArray((void **)oldDp, size);

deleteArray((void **)d, size);

deleteArray((void **)bp, size);

return 0;

}

This stub function was never used.

/* This doesn’t do anything yet, but converge... */

int checkForConvergence(double **dp, double **oldDp, IntVector size)

{

return 1;

}

256

A.1 An implementation of a SIMPLE algorithm

calcVelocityCorrection() calculates 𝑢𝑐
𝑗,𝑘 from equations

𝑢𝑐
𝑗,𝑘 = 𝑑𝑗,𝑘(𝛿𝑝𝑗,𝑘 − 𝛿𝑝𝑗+1,𝑘) (A.2)

and

𝑣𝑐
𝑗,𝑘 = 𝑑𝑗,𝑘(𝛿𝑝𝑗,𝑘 − 𝛿𝑝𝑗,𝑘+1) (A.3)

int calcVelocityCorrection(Vector **uc,

double **dp,

Vector **a_u,

IntVector size)

{

int i, j;

Vector E;

Vector d;

Vector delta=globalVars.delta;

double delta_t=globalVars.delta_t;

/* loop for u_c. Yes I should’ve cached the d term,

but you know what C’s structure is like, ay? */

for(i=1; i<size.x-1; i++)

for(j=1; j<size.y-1; j++)

{

E.x = delta_t * a_u[i][j].x / (delta.x*delta.y);

E.y = delta_t * a_u[i][j].y / (delta.x*delta.y);

d.x = E.x * delta.y/((1+E.x)*a_u[i][j].x);

d.y = E.y * delta.x/((1+E.y)*a_u[i][j].y);

257

A.1 An implementation of a SIMPLE algorithm

uc[i][j].x = d.x * (dp[i][j]-dp[i+1][j]);

uc[i][j].y = d.y * (dp[i][j]-dp[i][j+1]);

}

return 0;

}

These are simple routines for updating pressure and velocity arrays.

int updatePressure(FlowCell **fc, double **deltaP, IntVector size)

{

int i, j;

for(i=1; i<size.x-1; i++)

for(j=1; j<size.y-1; j++)

fc[i][j].pressure+=deltaP[i][j];

return 0;

}

int updateVelocities(Vector **u, Vector **ug, Vector **uc, IntVector size)

{

int i, j;

for(i=1; i<size.x-1; i++)

for(j=1; j<size.y-1; j++)

{

u[i][j].x = ug[i][j].x + uc[i][j].x;

u[i][j].y = ug[i][j].y + uc[i][j].y;

258

A.2 A simple triangular element streamline solver

}

return 0;

}

A.2. A simple triangular element streamline solver

The following is a dissection of a finite element fluid dynamics solver adapted

from T.J. Chung and written in Fortran. Given Neumann and Dirichlet bound-

ary conditions, it calculates the streamline of steady flow round a cylinder using

triangular elements. Due to symmetry, only a quarter of the area is simulated

– a quarter of the cylinder, and the upper half of the upstream flow. The upper

boundary is taken to be a moving plate of constant velocity.

A.2.1. Program structure

There are several steps of the program’s execution. They are as follows:

1. Initialisation – read in node coordinates and element node lists from

pre-existing files.

2. Coefficient matrices calculation – calculate local coefficient matrix

per node, then global coefficient matrix.

3. Determination of boundary conditions – read in boundary stream-

line values, calculate input vectors for each node accordingly.

4. Linear equations solution – solve system of linear equations to calcu-

late unknown streamline values.

5. Displaying results – print streamlines and horizontal velocites on right-

hand boundary.

259

A.2 A simple triangular element streamline solver

A.2.2. List of variables and parameters

Parameters

There parameters are set at compile time. In the example program, there are

10 nodes, 10 elements and 8 boundary nodes.

∙ 𝑛𝑑𝑒 – number of nodes in simulation

∙ 𝑛𝑒𝑙 – number of elements in simulation

∙ 𝑛𝑏𝑐 – number of boundary nodes

Variables

There are the most important variables in the program; the use of others

should be apparent.

∙ 𝑥𝑛𝑜𝑑𝑒[𝑛𝑑𝑒], 𝑦𝑛𝑜𝑑𝑒[𝑛𝑑𝑒] – 𝑥, 𝑦 coordinates of nodes

∙ 𝑛𝑒𝑛𝑛[𝑛𝑒𝑙, 3] – list of node numbers for each element

∙ 𝑎𝑛𝑚[3, 3] – the local coefficient matrix, used for each node.

∙ 𝑠𝑘[𝑛𝑑𝑒, 𝑛𝑑𝑒] – the global coefficient matrix

∙ 𝑚𝑜𝑑𝑒[𝑛𝑏𝑐] - the type of each of the boundary nodes: a value of 0 denotes

Neumann, while 1 denotes Dirichlet

∙ 𝑛𝑜𝑑𝑒[𝑛𝑏𝑐] – an array of nodes that are boundaries

∙ 𝑣𝑎𝑙[𝑛𝑏𝑐] – the value of the streamline on the boundaries

∙ 𝑟[𝑛𝑑𝑒] – the input vector for each node

∙ 𝑝𝑠𝑖[𝑛𝑑𝑒] – The value of the streamline at each node

260

A.2 A simple triangular element streamline solver

A.2.3. Program Listing and Description

Initialisation

This chunk of code declares all the main arrays, for the large part by dimen-

sion only, as their type is declared implicitly as Fortran allows (a to i for

integers, j to z for real numbers). 𝑠𝑘(𝑛𝑑𝑒, 𝑛𝑑𝑒) is declared as double precision

for compatibility with the 𝑖𝑛𝑣𝑒𝑟𝑡𝑀𝑎𝑡𝑟𝑖𝑥() subroutine

c Flow round a cylinder, triangular finite elements

c Flow round a cylinder, triangular finite elements

c From T.J.Chung, p336 Sect B-1

program CylinderFlow

c nde = no. nodes

c nel = no. elements

c nbc = nr of Dirichlet bound conds (with psi=0)

c nenn = table of node no’s by element

c anm = coeff of matrix for an element

c r = input vector

c sk = global coeff matrix

c xnode = x coord for global node

c ynode = y coord for global node

parameter (nel=10, nde=10, nbc=8)

parameter (nvn=2)

c WARNING -- all nodes along the vertical line above the crest

c of the cylinder should be numbered consecutively from top to bottom

c in order to be compatible with velocity calculations used in this

c program

common /trng/ anm(3,3)

261

A.2 A simple triangular element streamline solver

common /geom/ xnode(nde), ynode(nde), nenn(nel,3)

real*8 sk(nde, nde)

dimension r(nde), psi(nde), mode(nbc), node(nbc), val(nbc), jc(nde)

logical finished(nde), err

c clear global matrix

do i=1, nde

do j=1, nde

sk(i,j) = 0.0

end do

end do

This code below reads in node co-ordinates, and write them to the screen:

dat/node coords.txt must exist beforehand.

c read coordinates

open(unit=10, status=’old’, file=’dat/node_coords.txt’)

read (10,501) (xnode(i), ynode(i), i=1, nde)

close(10)

write (6,502)

write (6,503) (i, xnode(i), ynode(i), i=1, nde)

Then we read in the node numbers for each pair of triangular elements.

c read element node no’s

open(unit=11, status=’old’, file=’dat/element_numbers.txt’)

read (11,504) ((nenn(i,j), j=1,3), i=1, nel)

262

A.2 A simple triangular element streamline solver

close(11)

write (6,505)

write (6,506) (i, (nenn(i,j), j=1,3), i=1, nel)

Coefficient matrices calculation

This section requires explanation of the finite element technique used. Con-

sidering the streamfunction only within one element only, and assuming that

it varies linearly within an element, the finite element approximation of the

streamline is

𝜓 = Φ𝑁𝜓𝑁 (A.4)

where (1 ≤ 𝑁 ≤ 3) for each node in the element, and the basis functions given

as

Φ𝑁 = 𝑎𝑁 + 𝑏𝑁𝑥+ 𝑐𝑁𝑦 (A.5)

and

⎡⎢⎢⎢⎢⎢⎣
𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

𝑐1 𝑐2 𝑐3

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
(𝑥2𝑦3 − 𝑥3𝑦2)/2𝐴 (𝑥3𝑦1 − 𝑥1𝑦3)/2𝐴 (𝑥1𝑦2 − 𝑥2𝑦1)/2𝐴

(𝑦2 − 𝑦3)/2𝐴 (𝑦3 − 𝑦1)/2𝐴 (𝑦1 − 𝑦2)/2𝐴

(𝑥3 − 𝑥2)/2𝐴 (𝑥1 − 𝑥3)/2𝐴 (𝑥2 − 𝑥1)/2𝐴

⎤⎥⎥⎥⎥⎥⎦
(A.6)

where 𝑥𝑖, 𝑦𝑖 (or 𝑥𝑛𝑜𝑑𝑒(𝑖) and 𝑦𝑛𝑜𝑑𝑒(𝑖) from the program) are the 𝑖𝑡ℎ node’s

coordinates, and 𝐴 is the area of the element, given by

𝐴 =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒

1 1 1

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒ (A.7)

The local finite element equation is described by

𝐴𝑁𝑀𝜓𝑀 = 𝐹𝑁 (A.8)

263

A.2 A simple triangular element streamline solver

Since

𝐴𝑁𝑀 =
∫︁
Ω

Φ𝑁,𝑖Φ𝑀,𝑖𝑑Ω (A.9)

(Chung, eqn. 5-10)

The local coefficient matrix can be written as

𝐴𝑁𝑀 = 𝐴

⎡⎢⎢⎢⎢⎢⎣
𝑏21 + 𝑐21 𝑏2𝑏1 + 𝑐2𝑐1 𝑏3𝑏1 + 𝑐3𝑐1

𝑏2𝑏1 + 𝑐2𝑐1 𝑏22𝑐
2
2 𝑏3𝑏2 + 𝑐3𝑐2

𝑏3𝑏1 + 𝑐3𝑐1 𝑏3𝑏2 + 𝑐3𝑐2 𝑏23𝑐
2
3

⎤⎥⎥⎥⎥⎥⎦
= 𝑎𝑛𝑚(3, 3) (A.10)

in the program 𝐴𝑁𝑀 is calculated in the routine 𝑠𝑜𝑙𝑣𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡().

This local coefficient matrix exists for each element, so eventually there will

be 𝑛𝑒𝑙 3x3 matrices to be assembled into the global coefficient matrix, each

denoted (𝐴𝑁𝑀)𝑗 where 1 ≤ 𝑗 ≤ 𝑛𝑒𝑙.

The global finite element equation is given by

𝐴𝛼𝛽𝜓𝛽 = 𝐹𝛼 (A.11)

and 𝐴𝛼𝛽 and 𝐹𝛼 are related to 𝐴𝑁𝑀 and 𝐹𝑁 accordingly by

𝐴𝛼𝛽 =
𝑛𝑒𝑙∑︁
𝑒=1

𝐴
(𝑒)
𝑁𝑀Δ

(𝑒)
𝑁𝛼Δ

(𝑒)
𝑀𝛽 (A.12)

and

𝐹𝛼 =
∑︁
Γ

𝐹
(𝑒)
𝑁 Δ

(𝑒)
𝑁𝛼 (A.13)

where Δ𝑁𝑖 = 1 if local node 𝑁 coincides with global node 𝑖, and is 0

otherwise.

The program segment below calls solveElement() for each element which

returns that element’s 𝐴𝑁𝑀 , of which parts (according to Δ
(𝑒)
𝑁𝛼Δ

(𝑒)
𝑀𝛽, ie. in the

inner loops for j and k) are added to the global coefficient matrix, 𝐴𝛼𝛽 / 𝑠𝑘().

264

A.2 A simple triangular element streamline solver

c compute coeff matrix for each element

do i=1, nel

call solveElement(i)

c assemble globally

do j=1, 3

jj = nenn(i,j)

do k=1,3

kk = nenn(i,k)

sk(jj,kk) = sk(jj,kk) + anm(j,k)

end do

end do

end do

Determination of boundary conditions

Below, the code reads in boundary streamline values, setting the input vector

𝐹𝛼(in the program known as 𝑟 (𝑖)) initially to zero.

c Read Dirichlet boundary conditions information

write(6, 107)

open(unit=12, status=’old’, file=’dat/boundary_conds.txt’)

do i=1, nbc

read (12, 105) mode(i), node(i), val(i)

write (6, 108) mode(i), node(i), val(i)

end do

close(12)

265

A.2 A simple triangular element streamline solver

do i=1, nde

r(i) = 0.0

end do

Now we calculate 𝐹𝛼 -

∙ if 𝑚𝑜𝑑𝑒(𝑖) ̸= 0 then boundary conditions are Dirichlet (program label 84

to 82)

∙ if 𝑚𝑜𝑑𝑒(𝑖) = 0 then boundary conditions are Neumann (lines of code

before 84)

c Introduce boundary conditions

do 82 i=1, nbc

nx = node(i)

if(mode(i).ne.0) go to 84

do 85 j=1, nde

sk(nx,j) = 0.0

sk(j,nx) = 0.0

85 continue

sk(nx,nx) = 1.0

go to 82

c compute input vector

84 continue

do 86 k=1, nde

266

A.2 A simple triangular element streamline solver

86 r(k) = r(k) - sk(k, nx) * val(i)

do 87 k=1, nde

sk(k,nx) = 0.0

sk(nx,k) = 0.0

87 continue

sk(nx,nx) = 1.0

r(nx) = val(i)

82 continue

Linear equations solution

This part inverts the global coefficient matrix 𝐴𝛼𝛽 in the equation 𝐴𝛼𝛽𝜓𝛽 = 𝐹𝛼

so we get

𝜓𝛽 = 𝐴−1
𝛼𝛽𝐹𝛼 (A.14)

and solves this for the streamline, ie. for the 𝑖𝑡ℎ streamline

𝜓𝑖 =
[︂
𝑧𝑖1 𝑧𝑖2 ... 𝑧𝑖𝐸

]︂
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐹1

𝐹2

...

𝐹𝐸

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.15)

where 𝑧𝑖𝑗 is an element of 𝐴−1

write(6, *) ’Global coefficient matrix’

do xx=1, nde

write(6, *) (sk(xx,yy), yy=1, nde)

end do

267

A.2 A simple triangular element streamline solver

c Invert global matrix and multiply by vector

call invertMatrix(sk, nde, sk, err, finished)

if(err) then

write(6,*) ’1 Matrix is singular’

stop

end if

do i=1, nde

psi(i) = 0.0

do j=1, nde

psi(i) = psi(i) + sk(i,j)*r(j)

end do

end do

A.2.4. Displaying results

Calculating the horizontal velocity

This part prints results, and calculates the horizontal velocity 𝑣𝑥 at the right-

ward boundary. Taken from the definition of the streamline, we have

𝑣𝑥 =
𝜕𝜓

𝜕𝑦
(A.16)

If we multiply by 𝑑𝑦 and integrate thus

∫︁ 𝑏

𝑎
𝑑𝜓 =

∫︁ 𝑏

𝑎
𝑣𝑥𝑑𝑦 (A.17)

we get

𝑣𝑥 =
𝜓𝑏 − 𝜓𝑎

𝑦𝑏 − 𝑦𝑎

(A.18)

268

A.2 A simple triangular element streamline solver

Allowing us to easily calculate the horizontal velocity component; the code

below uses the last equation to do this.

c Write nodal streamline function data

write(6, 998)

write(6, 999) (i, psi(i), i=1, nde)

c Velocity profile on crest of cylinder

nnn = nde - nvn+1

mmm = nde - 1

write(6, 590)

do i=nnn, mmm

j = i+1

rd = ynode(i) - ynode(j)

rm = (ynode(i) + ynode(j)) / 2.0

sid = psi(i) - psi(j)

vel = sid/rd

write(6, 591) rm, vel

end do

stop

Upon a successful run, the program terminates at this point.

269

A.2 A simple triangular element streamline solver

Formatting Rules

Various formatting rules used to read data in from the text files, or to print

variables out. Of particular note are:

1. 501 – two floating point numbers, for the node coordinates

2. 504 – six integers in a row; this lists the node numbers for each element

pair

3. 107 – two integers (boundary type and node number), plus float (stream-

function value)

c Formatting rules...

105 format(2i5, f10.0)

107 format(’1 Dirichlet boundaryconditions’, //6x,’mode’, 5x,

& ’node’, 5x, ’value’/)

108 format(’ ’, 2i9, f10.2)

501 format(2f10.2)

502 format(’1node x-coord y-coord’)

503 format(’ ’, i3, 2f12.5)

504 format(6i5)

505 format(’0element node numbers’,/, ’ elmt 1 2 3’)

506 format(4i5)

c Angus formatting rules

510 format(3f10.5)

590 format(1h1, ’ velocity profile on crest of cylinder’///

& 6x, ’y’, 16x, ’vel’//)

270

A.2 A simple triangular element streamline solver

591 format(f10.5, f20.8/)

998 format(1h1, ’nodal streamline function data’//)

999 format(i5, f15.8)

end

c End of compilation: no diagnostics

A.2.5. Subroutines

Local Coefficient Matrix Solver

Coefficient matrix solver, which converts local coefficient matrix into global

coefficient matrix: this is described in the local coefficient matrix in Chung

[18], section 2.3.2.

c ------------------ subroutine section ------------------------

c Subroutine to solve element coefficient matrix

subroutine solveElement(n)

c x = x coord for local node

c y = y coord for local node

parameter (nel=10, nde=10, nbc=8)

common /trng/ anm(3,3)

common /geom/ xnode(nde), ynode(nde), nenn(nel,3)

real x(3), y(3)

real b(3), c(3)

c local node x and y coords

271

A.2 A simple triangular element streamline solver

do l=1, 3

i = nenn(n, l)

x(l) = xnode(i)

y(l) = ynode(i)

end do

c compute 2 x area

a2 = x(2)*y(3) + x(3)*y(1) + x(1)*y(2)

\& - x(2)*y(1) - x(3)*y(2) - x(1)*y(3)

a = a2 / 2.0

b(1) = (y(2) - y(3))/a2

b(2) = (y(3) - y(1))/a2

b(3) = (y(1) - y(2))/a2

c(1) = (x(3) - x(2))/a2

c(2) = (x(1) - x(3))/a2

c(3) = (x(2) - x(1))/a2

do i=1,3

do j=1,3

anm(i,j) = (b(j)*b(i) + c(j)*c(i)) * a

end do

end do

return

272

A.2 A simple triangular element streamline solver

end

Matrix Inversion Routine

The subroutine 𝑖𝑛𝑣𝑒𝑟𝑡𝑀𝑎𝑡𝑟𝑖𝑥() uses the Sherman-Morrison formula to iter-

atively calculate the inversion of a matrix. The following (figure A.2.5) has

been copied verbatim from material by Albert Meyers from Ruhr-University

Bochum.

This is the Fortran implementation of that algorithm.

c Invert matrix using Sherman/Morrison formula

subroutine invertMatrix(a,n,b,err,finished)

c Inversion b=a**(-1), where a is a (n*n) matrix. On error

c (a singular) err=.true.; additional storage finished needed.

c a and b may share memory (a will be overwritten by its inverse)

integer n

logical finished(n), err

real*8 a(n,n), b(n,n)

c internal parameter

integer count,i,i0,i1,j,k

real*8 bij,bki,eps,xn,xna

c eps: if pivot is less than this value --> error

parameter (eps=1d-37)

c Mark all columns not finished

do 10 i=1,n

finished(i)=.false.

10 continue

273

A.2 A simple triangular element streamline solver

Figure A.1: The Sherman-Morrison formula used to invert a matrix (courtesy

of Albert Meyers).

274

A.2 A simple triangular element streamline solver

c i0 first, i1 last non finished column

i0=1

i1=n

c main loop

do 100 count=1,n

c find biggest denominator

i=i0

xn=0d0

do 30 j=i0,i1

if (.not.finished(j)) then

xna=a(j,j)

do 20 k=1,n

if (finished(k)) xna=xna+b(j,k)*a(k,j)

20 continue

if (abs(xna).gt.abs(xn)) then

xn=xna

i=j

endif

endif

30 continue

err=abs(xn).lt.eps

275

A.2 A simple triangular element streamline solver

if (err) return

c Evaluate ith column

do 50 k=1,n

if (finished(k)) then

bki=0d0

else

bki=a(k,i)

endif

if (k.eq.i) bki=bki-1d0

do 40 j=1,n

if (finished(j)) bki=bki+b(k,j)*a(j,i)

40 continue

b(k,i)=-bki/xn

50 continue

b(i,i)=1d0+b(i,i)

c Evaluate remaining columns

do 70 j=1,n

if (finished(j)) then

bij=b(i,j)

do 60 k=1,n

b(k,j)=b(k,j)+bij*b(k,i)

60 continue

276

A.2 A simple triangular element streamline solver

b(i,j)=b(i,j)-bij

endif

70 continue

finished(i)=.true.

80 if (finished(i0)) then

i0=i0+1

goto 80

endif

90 if (finished(i1)) then

i1=i1-1

goto 90

endif

100 continue

end

277

Bibliography

[1] Marine current turbines ltd. website (www.marineturbines.com).

[2] Turbine power calculator at Danish Wind Industry Association website

(www.windpower.org/en/tour/wres/pow).

[3] Vestas website (www.vestas.com).

[4] Visualization toolkit website (www.vtk.org).

[5] Fortran compiler benchmarks. Technical report, Polyhedron Software,

2007.

[6] P.H. Alfredsson, F.H. Bark, and J.A. Dahlberg. Some properties of the

wake behind horizontal axis wind turbines. International Symposium on

Wind Energy Systems, 3:469–484, 1980.

[7] ANSYS. CFX R11 Manual.

[8] Vestas Wind Systems A/S. V52-850 kw, the turbine that goes anywhere.

Vestas brochure, 2008.

[9] R. J. Barthelmie, L. Folkerts, G. Larsen, K. Rados, S.C. Pryor, S. Frand-

sen, B. Lange, and G. Schepers. Comparison of wake model simulations

with offshore wind turbine wake profiles measured by sodar. Journal of

atmospheric and oceanic technology, 23:888–901, 2006.

[10] Rebecca Barthelmie, Hans Bergstrom, Wolfgang Schlez, Kostas Rados,

Bernhard Lange, Per Volund, Soren Neckelmann, Soren Mogensen, Ger-

ard Schepers, Luuk Folkerts, and Mikael Magnusson. Endow (Efficient

278

A.2 A simple triangular element streamline solver

Development of Offshore Wind Farms): Modelling wake and boundary

layer interactions. Wind Energy Conversion and Management, 7:225–245,

2004.

[11] R.J. Barthelmie, E. Politis, J. Prospathopoulos, S.T. Frandsen, O. Rath-

mann, K. Hansen, S.P. van der Pijl, J.G. Schepers, K. Rados, D. Cabezn,

W. Schlez, J. Phillips, and A. Neubert. Power losses due to wakes in large

wind farms. World Renewable Energy Congress, 10:2114–2119, 2008.

[12] John Bartholomew. Advanced Atlas of Modern Geography (3rd Edition).

McGraw-Hill, 1957.

[13] I. Bryden, S. Naik, P. Fraenkel, and C.R. Bullen. Matching tidal current

plants to local flow conditions. Energy, 23:669–709, 1998.

[14] Ian Bryden. Tidal energy. Encyclopedia of Energy, 6:130–150, 2004.

[15] Ian Bryden and S.J. Couch. ME1 - marine energy extraction: tidal re-

source analysis. Renewable Energy, 31:133–139, 2006.

[16] T. Burton, D.J. Sharpe, N. Jenkins, and E. Bossanyi. Wind Energy Hand-

book. Wiley, 2001.

[17] Donata Melaku Canu, Cosimo Solidoro, and Georg Umgiesser. Modelling

the responses of the Lagoon of Venice ecosystem to variations in physical

forcings. Ecological Modelling, 170:265–289, 2003.

[18] T.J. Chung. Finite Element Analysis in Fluid Dynamics. McGraw-Hill,

1978.

[19] S.J. Couch. Numerical modelling of tidal flows around headlands and

islands. PhD thesis, University of Strathclyde, 2001.

[20] A. Crespo, J. Hernandez, and S. Frandsen. Survey of modelling methods

for wind turbine wakes and wind farms. Wind Energy, 2:1–24, 1999.

279

A.2 A simple triangular element streamline solver

[21] S. Danilov, G. Kivman, and J. Schroter. A finite-element ocean model:

principles and evaluation. Ocean Modelling, 6 (2):125–150, 2004.

[22] Otto de Vries. On the theory of the horizontal-axis wind turbine. Annual

Review of Fluid Mechanics, 15:77–96, 1983.

[23] M. Drago and L. Lovenitti. Sigma coordinates hydrodynamic numerical

model for coastal and ocean three-dimensional circulation. Ocean Engi-

neering, 27, 2000.

[24] Zhaohui Du and M.S. Selig. The effect of rotation on the boundary layer

of a wind turbine blade. Renewable Energy, 20:167–181, 2000.

[25] T. Edwards. SB 04-09 wave and tidal power- harnessing the energy of the

sea. Technical report, Scottish Parliament, 2004.

[26] C.A.J. Fletcher. Computational Techniques for Fluid Dynamics, volume 2.

Springer Series in Computational Physics, 1991.

[27] C.A.J Fletcher. Computational Techniques for Fluid Dynamics, volume 1.

Springer Series in Computational Physics, 1991.

[28] R. Ford, C.C. Pain, M.D. Piggott, A.J.H. Goddard, C.R.E. de Oliveira,

and A.P. Umpleby. A nonhydrostatic finite-element model for three-

dimensional stratified oceanic flows. Part I: Model formulation. Monthly

Weather Review, 132:28162831, 2004.

[29] R. Ford, C.C. Pain, M.D. Piggott, A.J.H. Goddard, C.R.E. de Oliveira,

and A.P. Umpleby. A nonhydrostatic finite-element model for three-

dimensional stratified oceanic flows. Part II: Model validation. Monthly

Weather Review, 132:28322844, 2004.

[30] P.L. Fraenkel. Power from marine currents. Journal of Power and Energy,

216:1–14, 2002.

[31] Christopher Garrett. Tidal resonance in the Bay of Fundy and Gulf of

Maine. Nature, 238:441–443, 1972.

280

A.2 A simple triangular element streamline solver

[32] B. Gjevik, H. Moe, and A. Ommundsen. Strong topographic enhancement

of tidal currents: tales of the Maelstrom. Department of Mathematics,

University of Oslo, 1997.

[33] B. Gjevik and T. Straume. Model simulations of the M2 and K1 tide in

the Nordic Seas and the Artic Ocean. Tellus, 41A:73–96, 1989.

[34] H. Glauert. Aerodynamic Theory, chapter X, page Div. L. Springer, 1935.

[35] R. Gomez-Elvira, A. Crespo, E. Migoya, F. Manuel, and J. Hernandez.

Anisotropy of turbulence in wind turbine wakes. Journal of Wind Engi-

neering, 93:797–814, 2005.

[36] U. Högstrom, D. N. Asimakoupoulos, H. Kambezidis, C. G. Helmis, and

A Smedman. A field study of the wake behind a 2 mw wind turbine.

Atmospheric Environment, 22:803–820, 1988.

[37] M.Z. Hossain, H. Hirahara, Y. Nonomura, and M. Kawahashi. The wake

structure in a 2d grid installation of the horizontal axis micro wind tur-

bines. Renewable Energy, 32:2247–2267, 2007.

[38] W. Huang and R.D. Russell. Moving mesh strategy based on a gradient

flow equation for two-dimensional equations. SIAM Journal of Scientific

Computing, 20:9981015, 1999.

[39] W. Huang and M. Spaulding. 3d model of estuarine circulation and water-

quality induced by surface discharges. Journal of Hydraulic Engineering,

121:300–311, 1995.

[40] N. Jarrin, S. Benhamadouche, D. Laurence, and R. Prosser. A synthetic-

eddy-method for generating inflow conditions for large-eddy simulations.

International Journal of Heat and Fluid Flow, 27:585–593, 2006.

[41] M. Jureczko, M. Pawlak, and A. Mezyk. Optimisation of wind turbine

blades. Journal of Materials Processing Technology, 167:463–471, 2005.

281

A.2 A simple triangular element streamline solver

[42] Z. Kowalik and T.S. Murty. Numerical Modelling of Ocean Dynamics.

1993.

[43] S. Legrand, V. Legat, and E. Deleersnijder. Delaunay mesh generation for

an unstructured-grid ocean general circulation model. Ocean Modelling,

2:17–28, 2000.

[44] George Lemonis. Wave and tidal energy conversion. Encyclopedia of

Energy, 6:385–396, 2004.

[45] Marcel Lesieur and Olivier Metais. New trends in large-eddy simulations

of turbulence. Annual Review of Fluid Mechanics, 28:45–82, 1996.

[46] C.W. Li and B. Zhu. A sigma coordinate 3D k-epsilon model for turbu-

lent free surface flow over a submerged structure. Applied Mathematical

Modelling, 26:1139–1150, 2002.

[47] P.B.S. Lissaman. Energy effectiveness of arbitrary arrays of wind turbines.

Journal of Energy, 3:323–328, 1979.

[48] Marine Current Turbines Ltd. Worlds first offshore tidal current turbine

successfully installed. Press release, June 2003.

[49] M. Magnusson and A.-S. Smedman. Air flow behind wind turbines. Jour-

nal of Wind Engineering, 80:169–189, 1999.

[50] John Marshall, Alistair Adcroft, Chris Hill, Lev Perelman, and Curt

Heisey. A finite-volume, incompressible Navier-Stokes model for stud-

ies of the ocean on parallel computers. Journal of Geophysical Research,

102 C3:5753–5766, 1997.

[51] John Marshall, Chris Hill, Lev Perelman, and Alistair Adcroft. Hydro-

static, quasi-hydrostatic, and nonhydrostatic ocean modelling. Journal of

Geophysical Research, 102 C3:5733–5752, 1997.

[52] B. Massey. Mechanics of Fluids, 8th ed. Nelson Thornes, 1998.

282

A.2 A simple triangular element streamline solver

[53] Mathematics and Computer Science Division, Argonne National Labora-

tory, United States. MPICH2 Users’ Guide.

[54] Charles Meneveau and Joseph Katz. Scale-invariance and turbulence mod-

els for large-eddy simulation. Annual Review of Fluid Mechanics, 32:1–32,

2000.

[55] Robert Mikkelsen. Actuator disc methods applied to wind turbines. PhD

thesis, Technical University of Denmark, 2003.

[56] Luke Myers and A.S. Bahaj. Wake studies of a 1/30th scale horizontal

axis marine current turbine. Ocean Engineering, 34:758–762, 2007.

[57] D. Nechaev, J. Schrter, and M. Yaremchuk. A diagnostic stabilized finite-

element ocean circulation model. Ocean Modelling, 5 (1):37–63, 2003.

[58] E. Nøst. Calculating tidal current profiles from vertically integrated mod-

els near the critical latitude in the Barents Sea. Journal of Geophysical

Research, 99 C4:7885–7901, 1994.

[59] UK Department of Trade and Industry. Development, installation and

testing of a large scale tidal current turbine. Technical report, 2005.

[60] C.C. Pain, M.D. Piggot, A.J.H. Goddard, F. Fang, G.J. Gorman, D.P.

Marshall, M.D. Eaton, P.W. Power, and C.R.E. de Oliveira. Three-

dimensional unstructured mesh ocean modelling. Ocean Modelling,

10:533, 2005.

[61] F Pascheke and PH Hancock. Wake development and interactions within

an array of large turbines. In European Wind Energy Conference (EWEC),

2008.

[62] S.V. Patankar and D.B. Spalding. A calculation procedure for heat, mass

and momentum transfer in three-dimensional parabolic flows. Interna-

tional Journal of Heat Mass Transfer, 15:1787–1806, 1972.

283

A.2 A simple triangular element streamline solver

[63] M.D. Piggott. Fluidity/ICOM Manual. Applied Modelling and Compu-

tation Group, Imperial College in London, England, 2007.

[64] M.D. Piggott, C.C. Pain, G.J. Gorman, P.W. Power, and A.J.H. Goddard.

h, r, and hr adaptivity with applications in numerical ocean modelling.

Ocean Modelling, 2004.

[65] J. W. Schwiderski. On charting global ocean tides. Reviews of Geophysics

and Space Physics, 18:243–268, 1980.

[66] D.J. Sharpe. A general momentum theory applied to an energy-extracting

actuator disc. Wind Energy, 7:177–188, 2004.

[67] D. Smith and G.J. Taylor. Further analysis of turbine wake development

and interaction data. BWEA Wind Energy Conference, 13:325–331, 1991.

[68] Jens Nørkær Sørensen and Wen Zhong Shen. Numerical modeling of wind

turbine wakes. Journal of Fluids Engineering, 124:393–399, 2002.

[69] J.N. Sørensen, W.Z. Shen, and X. Munduate. Analysis of wake states by

a full-field actuator disc model. Wind Energy, 1:73–88, 1998.

[70] Kenneth Thomsen and Helge Aagaard Madsen. A new simulation method

for turbines in wake - applied to extreme response during operating. Wind

Energy, 8:35–47, 2005.

[71] D.J. Tritton. Physical Fluid Dynamics. Oxford University Press, 1988.

[72] G. Umgiesser and A. Bergamasco. A staggered grid finite element model

of the Venice Lagoon. Finite Elements in Fluids, 2, 1993.

[73] L.J. Vermeer, J.N. Srensen, and A. Crespo. Wind turbine wake aerody-

namics. Progress in Aerospace Sciences, 39:467–510, 2003.

[74] C.B. Vreugdenhil. Numerical Methods for Shallow-Water Flow. Kluwer

Academic Publishers, 1994.

284

A.2 A simple triangular element streamline solver

[75] Steffen Wußow, Lars Sitzki, and Thomas Hahm. 3D-simulation of the

turbulent wake behind a wind turbine. Journal of Physics: Conference

Series, 75:1–8, 2007.

[76] Genki Yagawa, Yasushi Nakabayashi, and Hiroshi Okuda. Large-scale

finite element fluid analysis by massively parallel processors. Parallel

Computing, 23:1365–1377, 1996.

[77] Keisuki Yamaguchi, Ju Lin, Arata Kaneko, Tokuo Yayamoto, Noriaki

Gohda, Hong-Quang Nguyen, and Hong Zheng. A continuous mapping of

tidal current structures in the Kanmon Strait. Journal of Oceanography,

61:283–294, 2005.

285

	1 Introduction
	1.1 Thesis overview
	1.2 Tidal currents
	1.2.1 Newton's theory of lunar tides
	1.2.2 Solar tides
	1.2.3 The Coriolis effect
	1.2.4 Factors affecting tidal streams

	1.3 Tidal power
	1.3.1 The power equation
	1.3.2 Power extraction devices

	1.4 General fluid dynamics equations
	1.4.1 The momentum equation
	1.4.2 The continuity equation
	1.4.3 Boundary conditions

	1.5 Computational fluid dynamics modelling
	1.5.1 Finite difference
	1.5.2 Finite element

	1.6 Tidal modelling
	1.6.1 Finite difference methods
	1.6.2 Finite element methods

	2 CFD package validation
	2.1 Introduction
	2.2 About Fluidity
	2.3 Boundary layer theory
	2.4 Computational models
	2.4.1 Adaptive-mesh, 3D finite element model in Fluidity
	2.4.2 Fixed-mesh 2D finite element model in COMSOL

	2.5 Results
	2.5.1 Fluidity, adaptive mesh
	2.5.2 COMSOL, fixed mesh

	2.6 Comparison between Fluidity and COMSOL
	2.7 Conclusions

	3 Existing turbine models
	3.1 The actuator disc
	3.1.1 Basic theory
	3.1.2 Simple momentum theory
	3.1.3 Power
	3.1.4 The thrust coefficient
	3.1.5 Blade element momentum theory and wake rotation
	3.1.6 Aerofoils

	3.2 Further extensions to actuator theory
	3.2.1 The - model

	3.3 Full 3D model simulation
	3.4 Wake modelling for wind farms

	4 Turbine model design
	4.1 Rationale
	4.2 Physical properties
	4.3 Method overview
	4.3.1 Free-wheeling angular velocity
	4.3.2 Calculating the power output
	4.3.3 Turbine angular velocity
	4.3.4 Extending solidity
	4.3.5 Limiting turbine performance
	4.3.6 Turbulence

	4.4 Numerical modelling
	4.4.1 Translation, rotation and volume definition
	4.4.2 Velocity changes inside the turbine
	4.4.3 Modelling turbulence
	4.4.4 Per-node force terms
	4.4.5 Power
	4.4.6 Relaxation of variables

	5 Software design
	5.1 Introduction
	5.1.1 Design ethos
	5.1.2 Interface to the module
	5.1.3 Parallel programming
	5.1.4 Development environment

	5.2 The CFD module interface
	5.2.1 Variables passed from Fluidity
	5.2.2 Calling the module

	5.3 The module
	5.3.1 Preparation
	5.3.2 Calculation
	5.3.3 Variable collection and output

	6 Experiments and experimental process
	6.1 Overview
	6.1.1 Aims
	6.1.2 Structure

	6.2 The turbine presence field
	6.3 Wind turbines
	6.3.1 Choice of turbine
	6.3.2 Defining turbine properties
	6.3.3 Vestas V52, without inlet turbulence
	6.3.4 Vestas V52, with inlet turbulence

	6.4 Marine turbines
	6.4.1 Choice of marine turbine
	6.4.2 Defining turbine properties
	6.4.3 Seaflow water channel with inlet turbulence
	6.4.4 Seaflow with bottom drag

	7 Results and analysis
	7.1 Data formats
	7.1.1 Unstructured mesh files
	7.1.2 Time-dependent turbine performance data

	7.2 Analysis software
	7.3 Techniques for analysis
	7.3.1 Preface
	7.3.2 Velocity deficit
	7.3.3 Turbulence intensity
	7.3.4 Circulation
	7.3.5 Turbine performance

	7.4 Results for Vestas V52 wind turbine
	7.4.1 Vestas V52 with inlet turbulence at u0=12 m/s
	7.4.2 Vestas V52 with inlet turbulence: overview of performance
	7.4.3 Vestas V52 with inlet turbulence: comparisions between wind speeds
	7.4.4 Vestas V52: without turbulent inlet conditions

	7.5 Results for Seaflow marine turbine
	7.5.1 Channel with rigid lid: inlet condition u0=2.70 m/s
	7.5.2 Channel with rigid lid: overview of performance
	7.5.3 Channel with rigid lid: comparison between flow speeds
	7.5.4 Channel with vertical velocity gradient and bottom drag

	8 Discussion
	8.1 Comparisons between simulations
	8.1.1 Vestas V52: turbulent versus non-turbulent inlet conditions
	8.1.2 Vestas V52 versus Seaflow
	8.1.3 Realistic velocity profiles and bottom drag

	8.2 Comparison with existing literature
	8.2.1 With wind turbine theory and experiment
	8.2.2 With marine turbine theory and experiment

	9 Conclusions
	9.1 Achievements
	9.2 Future work

	A Test CFD solvers
	A.1 An implementation of a SIMPLE algorithm
	A.1.1 Model overview
	A.1.2 Program structure
	A.1.3 Parameters
	A.1.4 The main routine and entry point
	A.1.5 Initialisation
	A.1.6 The calculation routines

	A.2 A simple triangular element streamline solver
	A.2.1 Program structure
	A.2.2 List of variables and parameters
	A.2.3 Program Listing and Description
	A.2.4 Displaying results
	A.2.5 Subroutines

