

Wind and marine turbine modelling at Heriot-Watt

Dr Angus Creech School of Engineering and Physical Sciences Heriot-Watt University

Email: a.c.w.creech@hw.ac.uk

Introduction :: motivation and goals

- Cost/benefit analysis: energy yield estimation for layout optimisation
- Downstream effects:
 - environmental impact assessment
 - farm developments
 - wake modelling over large distances
- Second-by-second performance data for each turbine

Introduction :: farm configuration

- Wind farm utilisation is on average 30% of rated power
- Graph shows % efficiency increase v. annual savings for farm
- Accurate farm modelling allows for better planning
- And for marine turbine farms?

Theory :: model overview

- Cylindrical volume in which body forces act no boundary conditions
- Uses hybridised blade-element theory

Theory :: model overview (2)

Turbine module uses state-of-the-art computational fluid dynamics (CFD) software to model turbulent flow.

- Turbulence is modelled by large-eddy simulation
- Bathymetry and bottom drag can be added
- Free surfaces are possible
- Large simulations scalable to thousands of cores

Theory :: parameterisation

To parameterise the turbine, need:

Blade geometry and weight
Lift/drag coefficient graphs
distribution

Theory :: turbulence

Generated at end of turbine volume, divided into three sections:

Marine :: water channel

Marine Current Turbine Ltd – Seaflow (300 kW)

Marine :: velocity profile

Turbulence intensity slice calculated over 45 minutes

Marine :: videos

- Bottom drag vertical slice (solid slice here / contours here)
- Bottom drag case horizontal slice (click here)

Validation work

Validation with wind turbines

Joint project with energy company to validate model against real data.

- Site selected with turbine in-situ
- LIDAR site measurements provided for wake comparison
- Ordinance Survey (OS) data used for terrain modelling
- Ground features (trees, grass etc.) added as boundary conditions
- Realistic wind profiles as boundary conditions

Model overview

- Large simulation domain 6km x 6km x 750m
- Southwesterly wind at 8 m/s peak (~6 m/s at hub height)
- 950kW turbine at centre of domain, 50m hub height

Specification :: ground features

- OS map data provides data on locations of trees, grass, water, etc.
- Graymap overlay converted to drag coefficients, zero-mean displacements and roughness lengths.

Specification :: land relief

- OS contour data at 10m intervals
- Used to generate height grid
- Finite-element mesh fitted to height grid
- Bottom surface locked to preserve topography

Specification :: boundary conditions

- Log wind speed profile set at boundaries
- Specified wind direction
- In future will use Synthetic Eddy Method with LIDAR turbulence measurements – fully turbulent boundary conditions

Specification :: turbine parameters

- 950 kW turbine: 54.5m diameter, 50m hubheight
- Lift/drag characteristics taken from NACA data
- Blade geometry (chord length, blade twist) and performance data taken from manufacturer's technical manual

Results :: turbine performance

Results :: wake comparison

LIDAR contours Model contours Wake profiles

Results :: wake comparison (2)

• Wake deficit comparison with other sites (Creech et al, 2010)

Results :: horizontal slice at t=60s

Results :: horizontal slice at t=300s

Results :: horizontal slice at t=300s

Results :: vertical slice at t=60s

Results :: vertical slice at t=300s

Results :: vertical slice at t=900s

Results :: mesh view at t=300s

Videos

- Vertical slice:
 - whole model, looking NW (click here)
 - zoomed view (click here)
 - contour plot (click here)
- Horizontal slice
 - Zoomed contour plot (click here)

Model summary

Model can simulate:

- Wind or tidal flow over large areas with land relief or seafloor
- Response of multiple turbines to wind or marine currents and the up/downstream wake effects
- Transport of 'tracer' properties of fluid

Model provides:

- Per-timestep 3D data set for velocity, pressure, tracer concentrations
- Per-timestep performance data for each turbine
- Time-averaged velocity plots and turbulence plots

Future plans

- Modelling of performance and wakes in small farm configurations
- Validation of marine/wind farm modelling with wake and performance measurments
- Feeding into a virtual grid? Modelling actual electrical supply over typical periods additional expertise required
- Utilisation as a planning tool: small-scale test cases required

End